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This article studies the joint roles of similarity and frequency in determining graded category 
structure. Perceptual classification learning experiments were conducted in which presentation 
frequencies of individual exemplars were manipulated. The exemplars had varying degrees of 
similarity to members of the target and contrast categories. Classification accuracy and typicality 
ratings increased for exemplars presented with high frequency and for members of the target 
category that were similar to the high-frequency exemplars. Typicality decreased for members of 
the contrast category that were similar to the high-frequency exemplars. A frequency-sensitive 
similarity-to-exemplars model provided a good quantitative account of the classification learning 
and typicality data. The interactive relations among similarity, frequency, and categorization are 
considered in the General Discussion. 

Among the most well-established findings in the categori- 
zation literature is that categories have "graded structures" 
(Rips, Schoben, & Smith, 1973; Rosch, 1973, 1978; Rosch & 
Mervis, 1975; Smith & Medin, 1981). Rather than all in- 
stances of a category being "equal," it appears that certain 
instances are better examples than others. For example, people 
reliably rate a robin as a better example of the category birds 
than they rate a penguin. Various experimental operations 
converge on the view that categories have graded structures, 
including typicality ratings, errors in classification learning, 
reaction time in speeded classification, and exemplar produc- 
tion. 

Why are some instances of  a category better examples than 
others? There has been widespread agreement since the work 
of Rosch and Mervis (1975) that a major determinant of  
graded category structure involves stimulus similarity. Gen- 
erally speaking, the more similar an instance is to the other 
members of  its category and the less similar it is to members 
of  contrast categories, the higher will be the typicality rating 
given to that instance. So, for example, whereas robins are 
highly similar to numerous other instances of  the category 
birds, penguins are relatively dissimilar to other bird instances. 

Another variable that may play an important role in deter- 
mining graded category structure is stimulus frequency. It 
seems plausible that as the frequency with which a person 
experiences an instance as an example of a category increases, 
the "goodness" of that instance as an example of the category 
will also increase. Thus, robins may be rated as highly typical 
birds because they are frequently experienced examples of the 
category birds. 

In a seminal study investigating the determinants of graded 
category structure, Rosch, Simpson, and Miller (1976, Exper- 
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iment 2) conducted a category learning condition in which 
frequency was inversely related to similarity. Stimuli that 
were highly similar to other members of the category were 
presented less frequently than were stimuli that were relatively 
dissimilar to other members of the category. In transfer tests, 
the low-frequency, high-similarity items were rated as better 
examples of the category than were the high-frequency, low- 
similarity items. This result pointed clearly to the importance 
of similarity structure in determining typicality, and led Rosch 
et al. to question the importance of  frequency information. 
Nevertheless, Rosch et al. acknowledged in their General 
Discussion, "Of course, frequency (repetition) is a powerful 
effect in learning. If  the structural relation between items were 
held constant in the present experimental design, and fre- 
quency alone were to be varied, there is no doubt that fre- 
quency effects similar to our typicality effects could have been 
demonstrated" (Rosch et al., 1976, p. 501). 

More recent research suggests that some form of familiarity 
or frequency may indeed play a n important role in determin- 
ing graded category structure. I Correlational studies using 
natural category terms indicate that familiar exemplars are 
judged as being more typical than unfamiliar ones (Ashcraft, 
1978; Barsalou, 1985; Hampton & Gardner, 1983; Malt & 
Smith, 1982; Schwanenflugel & Rey, 1986). Barsalou (1985, 
p. 631) suggested and provided evidence for the idea that the 
relevant variable is not overall familiarity but rather frequency 
ofinstantiation, which he defined a s "  . . .  someone's subjec- 
tive estimate of how often they have experienced an entity as 
a member of a particular category." For example, although 
people are more familiar overall with chairs than with logs, 
this greater overall familiarity would not lead people to judge 
chairs as better examples of  the category firewood than are 
logs. Logs are probably experienced more frequently than are 
chairs as examples of  the category firewood. 

Although I use the terms familiarity and frequency here inter- 
changeably, there are clearly important distinctions between the two 
constructs. For example, low-frequency exemplars may still be judged 
as highly familiar if their memory traces are highly "available" 
(Tversky & Kahneman, 1973). It also seems important to distinguish 
between "subjective" frequency and familiarity. 
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Effects of exemplar frequency on graded category structure 
have also been observed in classification learning experiments. 
Knapp and Anderson (1984) had subjects learn three cate- 
gories of differing size (1, 6, and 24 unique exemplars). 
Individual exemplars were presented with frequency inversely 
proportional to the size of their respective categories. Learning 
was best for the highest frequency exemplars, that is, those 
exemplars from the smallest category, and worst for the lowest 
frequency exemplars. Because all exemplars within any given 
category were presented with equal frequency, however, 
Knapp and Anderson's experiment was not designed to detect 
changes in the local, graded structure of categories. Estes 
(1986b) found increased classification accuracy for individual, 
probabilistically generated exemplars that were repeated over 
the course of category learning. However, differential fre- 
quency was not explicitly manipulated in his study and may 
have been partially confounded with other variables. And in 
a classification learning study that comes closest to the present 
one, Barsalou (1981, Experiment 4) manipulated individual 
exemplar frequencies and similarity relations as orthogonal 
variables and found clear effects of both on subjects' postac- 
quisition typicality ratings. 

The present article adopts as a working hypothesis the idea 
that both similarity structure and frequency are determinants 
of graded category structure. The empirical goal is to study 
the manner in which these variables interact by manipulating 
the frequency with which items of varying degrees of similarity 
are presented during category learning. The experiments will 
allow for a more detailed and controlled study of the role of 
individual exemplar frequencies and similarities than has been 
possible with previously published work. The theoretical goal 
of the study involves the testing of a quantitative model within 
which to interpret the joint roles of similarity and frequency 
information as reflected in people's category representations. 

Exemplar-Based Representat ions of  Similarity 
and Frequency 

The proposed model for interpreting the joint roles of 
similarity and frequency information is a version of the 
context model of classification developed by Medin and 
Schaffer (1978) and generalized by Nosofsky (1984, 1986). 
According to the context model, people represent categories 
by storing individual exemplars in memory. Classification 
decisions are based on similarity comparisons to the stored 
exemplars. Formally, the model states that the probability of 
classifying stimulus i into Category 1, P(R~ I Si), is given by 

bl Zj,c, ~ i j  , (1) 
e ( R l  I S  i) = bl  ~j.c! ?~ij -Jr- (1 - b l )  ~keC 2 ~ik 

where b~ (0 -< bl -< 1) represents the bias for making Category 
Response 1, and where n~j denotes the similarity between 
exemplars i and j. The expression in the numerator of Equa- 
tion 1 is the bias for making Category Response 1 multiplied 
by the sum of similarities of stimulus i to all exemplars j 
belonging to Category 1. This expression gives the "strength" 
of making a Category 1 response given presentation of stim- 
ulus i. This strength is then divided by the sum of strengths 

for both categories (assuming a two-category experiment) to 
determine the categorization probability. 

Two alternative interpretations of the context model need 
to be distinguished. By one interpretation, the summing of 
similarities in Equation 1 takes place over all distinct exem- 
plars in a category: The exemplars are views as "types," with 
multiple presentations of the same exemplar giving rise to a 
single representation in memory. A second interpretation is 
that the summing of similarities takes place over the complete 
set of presented exemplars: The exemplars are viewed as 
"tokens," with multiple presentations of the same exemplar 
leading to multiple representations in memory. The "type" 
interpretation is a frequency-insensitive model, whereas the 
"token" interpretation is frequency sensitive. To make explicit 
these alternatives in this article, Equation 1 will be understood 
to represent the frequency-insensitive model. Assuming that 
each exemplar presentation results in a unique memory trace 
(e.g., Hintzman & Block, 1971), the frequency-sensitive ver- 
sion is formalized as 

P(R1 l S i) -- b, Zj,c, Nj ~ij (2) 
bl Z).c, N/7]i j -1- (1 - bl) Zk,C2 Nk nik' 

where Nj is the relative frequency with which exemplar j is 
presented during training. Estes (1986a, 1986b) assumed this 
frequency-sensitive version in recent theoretical and empirical 
work comparing the context model and feature-frequency 
models. The frequency-sensitive context model serves to guide 
the present research. 

In summary, the working hypotheses motivating this re- 
search are that similarity and frequency jointly determine 
graded category structure, and that the manner in which 
these variables interact may be interpreted in terms of the 
frequency-sensitive context model. The conceptual underpin- 
ning of this approach is that people make classification deci- 
sions on the basis of similarity comparisons to stored exem- 
plars. Furthermore, frequency information is represented nat- 
urally in the model in terms of the differential frequency with 
which individual exemplar traces are stored in memory. In 
the experiments to be reported, these hypotheses are tested by 
conducting category learning conditions in which presenta- 
tion frequency of individual exemplars is manipulated. At- 
tempts are made to provide quantitative accounts of the 
category learning data and of typicality rating data obtained 
in postacquisition transfer tests. 

Experiment  1 

In this experiment, subjects learned to classify Munsell 
colors varying along the dimensions of brightness and satu- 
ration into two categories. The locations of the stimuli in the 
color space and the category structure that was used are 
illustrated in Figure 1. The two-dimensional scaling solution 
that is shown was derived on the basis of pair-wise confusion 
errors observed during an identification learning condition 
(Nosofsky, 1987). 

The categories divide roughly into colors that are "pinkish" 
(Category 2) and colors that are "brownish" (Category 1). In 
addition to the categories having a fairly natural description, 
the dimensional organization of the stimuli is simple enough 
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Figure 1. Category structure tested in Experiments 1 and 2. (Stimuli 
enclosed by triangles = members of Category 1; Stimuli enclosed by 
circles = members of Category 2) 

to allow for a precise quantification of similarity relations. 
Furthermore, there appear to be varying degrees of category 
"goodness" associated with the individual exemplars. For 
example, Colors 2, 4, and 7 clearly are good exemplars of 
Category 2, whereas Colors 3, 6, and 9 are relatively poor 
exemplars, lying close to the category boundary. 

In Experiment 1 presentation frequencies of good Exem- 
plars 2 and 7 were manipulated. Condition B was a baseline 
condition in which all exemplars were presented with equal 
frequency, whereas in Condition E2 (E7), Exemplar 2 (7) was 
presented approximately five times as often as each of the 
other exemplars. 

If differential frequency information is reflected in people's 
category representations in the manner  suggested earlier, then 
the first main prediction is that classification accuracy and 
typicality ratings for the manipulated exemplars should in- 
crease with their presentation frequency. A second main 
prediction stemming from the frequency-sensitive exemplar 
model is that classification accuracy and typicality ratings 
should also increase for members of Category 2 that are very 
similar to the high-frequency exemplars. As can be seen in 
Figure 1, Exemplar 4 is a close neighbor of Exemplar 2, and 
Exemplar 9 is a close neighbor of Exemplar 7. The expectation 
is that category "goodness" will increase primarily for Exem- 
plars 2 and 4 in Condition E2 and for Exemplars 7 and 9 in 
Condition E7. 

Method 

Subjects 

150 subjects were hired for participation in the experiment. Most 
subjects were undergraduates at Indiana University. 50 subjects par- 
ticipated in Conditions B, E2, and E7, respectively. 

Stimuli 

The stimuli were 12 color chips manufactured by the Munsell 
color company. According to the Munsell color system, the colors 
were of a constant red hue (5R) but varied in brightness (value) and 
saturation (chroma). The Munsell value/chroma specifications for 
Colors 1-12 shown in Figure 1 were 7/4, 7/8, 6/6, 6/10, 5/4, 5/8, 5/ 
12, 4/6, 4/10, 3/4, 3/8, and 3/10. 

The colors were mounted behind 5/16-in. (0.79-cm) diameter 
circles punched in the middle of white index cards. To ensure that 
subjects were attending to the actual colors and not to incidental 
markings on the cards, four different tokens were used for each color. 
A total of 19 tokens of Color 2 (7) were used in Condition E2 (E7). 

Procedure 

Learning phase. On any given trial, a subject viewed a color and 
guessed its category assignment (Figure 1). The subject entered the 
response on a score sheet and then turned over the card to view the 
correct answer. A code number was also entered on the back of the 
card to identify the stimulus for the experimenter. The subject entered 
this code number on the score sheet next to the category response 
and then restudied the stimulus-response mapping. 

Subjects were tested for three blocks of trials. There were 48 trials 
in each block of Condition B and 63 trials in each block of Conditions 
E2 and E7. The experimenter shuffled the deck of cards between each 
block. 

Transfer phase. Subjects were presented with each of the 12 colors 
in a random order. The subject classified the color into either Category 
1 or 2, rated on a scale from 1 (lowest) to 10 (highest) how confident 
he or she was about being correct, and then rated on a scale from 1 
to 10 how typical or how good an example the color was of its 
category. The instructions emphasized that even if a subject was 
highly confident that a color belonged to a given category, one could 
still judge it as a poor example of the category. It was hoped that the 
distinction between classification confidence and judged typicality 
would be reinforced by collecting both types of ratings. Subjects were 
then presented with all pairs of colors from Category 2 and were 
instructed to choose the better example of Category 2 in each pair. 
Presentation order of the pairs and left-right placement of the colors 
within each pair were randomized. 

Results 

Classification Learning 

Table 1 shows the mean proportion of classification learn- 
ing errors for each color in each condition. The distributions 
of errors were similar across conditions, with colors closest to 
the category boundary (1, 3, 6, 8, 9, and 12) having the most 
errors, and colors far from the boundary (2, 4, and 10) the 
least. Color 2 had a smaller proportion of errors in Condition 
E2 than in the other conditions, average t(98) = 4.10, p < 
.001, whereas Color 7 had a smaller proportion of errors in 
Condition E7, average t(98) = 4.08, p < .001. The trends for 
Colors 4 and 9 were in the predicted directions but were small 
in magnitude and not statistically significant. 

Typicality Ratings 

The results for confidence and typicality ratings were essen- 
tially identical and so I report only the typicality data. The 
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Table 1 
Proportion of Classification Learning Errors for Each Color: 
Experiment 1 

Condition 

Color B E2 E7 
1 .318 .296 .308 
2 .123 .026 .147 
3 .513 .460 .555 
4 .113 .067 .103 
5 .175 .114 .160 
6 .337 .328 .384 
7 .130 .181 .039 
8 .162 .116 .131 
9 .372 .409 .345 

10 .097 .050 .066 
11 .143 .103 .146 
12 .272 .223 .267 

typicality ratings were converted to a 20-point scale by trans- 
forming all ratings associated with Category 1 responses to 
negative values. Thus, - 1 0  represents the rating associated 
with the most typical members of  Category 1, whereas + l0 
represents the rating associated with the most typical members 
of Category 2. The mean typicality ratings for each color in 
each condition are shown in Table 2. There were large differ- 
ences in the typicality ratings associated with the different 
stimuli. As expected, Colors 2, 4, and 7 were rated as highly 
typical members of Category 2, whereas Colors 3, 6, and 9 
were rated as less typical. Color 10 was rated as the most 
typical exemplar of  Category l, whereas Color 1 was rated 
least typical. More interesting, the pattern of  typicality ratings 
interacted with learning conditions. In Condition E2, Colors 
2 and 4 were rated more typical of  Category 2 than was Color 
7, whereas the reverse pattern was observed in Condition E7. 
The typicality ratings for Color 9, which was highly similar to 
Color 7, also increased in Condition E7. 

The reliability of  these observations is confirmed by statis- 
tical tests. Analyses of  variance on the typicality ratings re- 
vealed a significant effect of  colors, F(11, 1617) = 266.02, 
MSe = 21.57, p < .01; and a more important Condition x 

Table 2 
Mean Typicality Ratings: Experiment I 

Condition 

Color B E2 E7 
1 -1.04 -2.52 -2.54 
2 7.96 9.70 6.32 
3 .74 .28 .18 
4 8.38 9.20 7.02 
5 -5.50 -5.16 -6.18 
6 2.02 4.00 2.88 
7 7.22 6.90 9.10 
8 -6.86 -6.40 -6.28 
9 1.72 2.34 4.60 

10 -8.76 -8.40 -8.82 
11 -6.78 -7.00 -4.80 
12 -4.84 -5.34 -2.00 

Note. - 10 = Category 1 most typical; + 10 = Category 2 most typical. 

Color interaction, F(22, 1617) = 2.92, MSe = 21.57, p < .01. 
Separate t tests revealed that the typicality ratings for Colors 
2, 4, 7, and 9 all changed significantly across Conditions E2 
and E7, average t(98) = 4.13, p < .001. These results are 
consistent with the view that similarity and frequency jointly 
determine graded category structure. Typicality ratings in- 
creased for exemplars that were presented with high fre- 
quency, and also increased for colors that were very similar 
to the high-frequency exemplars. 

With the exception of  Color 12, typicality ratings for the 
remaining exemplars were fairly stable across conditions. 
Color 12 was rated as a significantly less typical member of  
Category 1 in Condition E7 than in Conditions B and E2, 
average t(98) = 2.80, p < .01. Although not the focus of  
Experiment 1, this result is consistent with another prediction 
of  the frequency-sensitive exemplar model, namely that typi- 
cality should decrease for members of contrast categories that 
are similar to high-frequency exemplars of a target category. 
(As will be seen in ensuing theoretical analyses, subjects had 
a tendency to attend selectively to the saturation dimension 
during their classification learning. This selective attention 
tendency results in Color 12 becoming more similar to Color 
7 than is illustrated in Figure 1.) The hypothesis of decreasing 
typicality for members of  contrast categories that are similar 
to high-frequency exemplars is tested more directly in Exper- 
iment 2. 

Typicality Pair Comparisons 

The results for the typicality pair comparisons are shown 
in Table 3. The entry in cell (i, j) gives the frequency with 
which the color in row i was judged as a better example of 
Category 2 than was the color in column j. The pattern of  
results for the typicality pair comparisons mirrors the pattern 
observed for the typicality ratings. Colors 2, 4, and 7 domi- 
nated Colors 3, 6, and 9 across all three conditions. More 
interesting, manipulating the frequency of  Exemplars 2 and 
7 had a major effect on the pattern of typicality pair compar- 
isons. In Condition E2, Colors 2 and 4 were judged as better 
examples of  Category 2 than was Color 7. The reverse pattern 
was observed in Condition E7. Color 9 also made consistent 
gains in category goodness across Conditions E2 and E7 
(except, of course, relative to Color 7). Furthermore, Color 4 
made gains relative to Color 2 across Conditions E2 and E7. 
This result would be expected for two reasons. First, decreas- 
ing the frequency of Color 2 should "hurt" Color 2 more than 
Color 4; and second, increasing the frequency of Color 7 
should "help" Color 4 more than Color 2 because Color 4 is 
more similar to Color 7 than is Color 2 (see Figure 1). To 
confirm the reliability of  these observations, chi-square tests 
of independence were conducted for each pair of colors across 
Conditions E2 and E7. The changes in pair-comparison judg- 
ments were statistically significant for numerous pairs of 
colors, and were particularly large for Pairs 2-4, 2-7, and 4-7, 
average x 2 (l, N = 100) = 22.1, p < .001. The results of  the 
typicality pair-comparison tests provide further evidence that 
similarity and frequency jointly influence graded category 
structure. 
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Table 3 
Frequency With Which Row Stimulus Was Selected as a 
Better Example of  Category 2 Than Was Column Stimulus: 
Experiment 1 

Color 
Color and 
condition 2 3 4 6 7 9 

B - -  45 34 44 33 43 
E2 - -  49 43 49 42 48 
E7 - -  43 26 42 17 36 

3 
B 5 - -  8 19 12 21 
E2 1 - -  1 16 12 21 
E7 7 - -  1 15 1 12 

4 
B 16 42 - -  44 27 43 
E2 7 49 - -  47 38 48 
E7 24 49 - -  45 12 41 

6 
B 6 31 6 - -  6 23 
E2 1 34 3 - -  6 24 
E7 8 35 5 - -  0 16 

7 
B 17 38 23 44 - -  48 
E2 8 38 12 44 _ 46 
E7 33 49 38 50 - -  49 

9 
B 7 2 9  7 2 7  2 - -  

E2 2 29 2 26 4 - -  
E7 14 38 9 34 1 - -  

Note. Entry in cell (i,j) plus entry in cell (j,i) equals 50. 

Theoret ical  A nalysis  

In this section quantitative tests are made of the proposed 
exemplar approach to representing the joint roles of similarity 
and frequency information. 

Classif ication 

For the frequency-sensitive exemplar model, all the Njs in 
Equation 2 are set equal to one, except that N2 and N7 are set 
equal to 19//4 in Conditions E2 and E7, respectively. In the 
frequency-insensitive model (Equation 1), N2 and N7 are held 
fixed at one. 

To apply the models, a method is needed for computing 
the interexemplar (nij) similarity values in Equations 1 and 2. 
For the continuous-dimension stimu[i used in this experi- 
ment, it is natural to apply the multidimensional scaling 
approach (Shepard, 1958b, 1962; Torgerson, 1958). The sim- 
ilarity between each pair of  exemplars i and j (nij) is assumed 
to be a monotonically decreasing function of  their distance in 
the psychological space (d~j), nij = f(d~j). The distance between 
each pair of  exemplars is computed by using a weighted 
Euclidean metric: 

dij = x/w,(xi, - xj,) z + (1 - wl)(xi2 - -  Xj2) 2, (3) 

where xik is the psychological value of exemplar i on dimen- 
sion k and w~ (0 <wl <_I) is the weight given to Dimension 1 
(saturation) in computing overall distance. Previous research 
suggests that the Euclidean metric provides an accurate de- 

scription of psychological distance relations for stimuli vary- 
ing along "integral" dimensions, such as the present Munsell 
colors (Garner, 1974; Shepard, 1958b; Shepard & Chang, 
1963). The weight parameter in Equation 3 is intended to 
reflect the role of  selective attention strategies that may op- 
erate during classification learning (Medin & Schaffer, 1978; 
Nosofsky, 1987; Reed, 1972). Note that the Xik coordinates in 
Equation 3 are given by the multidimensional scaling solution 
for the colors derived in Nosofsky's (1987) identification 
learning study (see Nosofsky, 1987, Table 3). 

The distance dij is converted to a similarity measure using 
an exponential decay function: 

•ij = e -c%. (4) 

Previous research indicates that the exponential decay func- 
tion describes accurately the relation between similarity and 
psychological distance in classification learning situations 
(Nosofsky, 1987; Shepard, 1958a, 1984, t986). The parameter 
c (0 -< c <- o~) in Equation 4 is a scale factor reflecting overall 
discriminability in the psychological space. 

In summary, the distance between each pair of  exemplars 
is computed by using Equation 3; this distance is converted 
to a similarity measure by using Equation 4; the derived 
similarity values are then substituted into Equation 2 (or 1) 
to predict the classification probabilities. The model uses three 
parameters: the category response bias parameter b~ in Equa- 
tion 2; the attention weight wl in Equation 3; and the scale 
parameter c in Equation 4. In the present situation, this three- 
parameter model is used to predict 36 classification probabil- 
ities, 12 in each of Conditions B, E2, and E7. 

The frequency-sensitive exemplar model was fitted simul- 
taneously to the Block 3 classification learning data obtained 
in Conditions B, E2, and E7 by using a maximum-likelihood 
criterion (see Nosofsky, 1985, 1987, for discussions of  the 
merits and logic behind this model-fitting approach). The 
maximum-likelihood parameters and summary fits are pre- 
sented in Table 4 and the predicted and observed Category 2 
response probabilities are given in Table 5. The three-param- 
eter model provides a good description of the data, accounting 
for 97.9% of the response variance. The model predicts cor- 
rectly the trends of increasing classification accuracy for 
Colors 2 and 4 in Condition E2 and Colors 7 and 9 in 
Condition E7. However, even this frequency-sensitive model 
underestimates correct classification probabilities for the high- 
frequency exemplars (2 and 7). 2 Note that the model predicts 
decreasing classification accuracy for Color 12 in Condition 
E7. Although this trend was not observed in the classification 
learning data, it showed up in the postacquisition typicality 
ratings. 

The frequency-insensitive exemplar model performed 
markedly worse than the frequency-sensitive model ( - In  L -- 
280.0). Not surprisingly, a major shortcoming of the model 

2 The deviations between predicted and observed probabilities for 
the high-frequency exemplars made large contributions to - ln L 
because they are based on nearly five times the number of observa- 
tions as other cells and because probabilities near unity have very 
small standard errors. 
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Table 4 
Maximum-Likelihood Parameters and Summary Fits for the 
Frequency-Sensitive Exemplar Model in Block 3 of 
Classification Learning 

Parame~r Fit 

Experiment c wt b~ -In  L SSE % var 

1 1.23 .67 .61 193.9 .099 97.9 
2 1.33 .67 .62 199.7 .124 97.6 

Note. In L = log-likelihood; SSE = sum of squared deviations between 
observed and predicted classification probabilities; % var = percent- 
age of variance accounted for. SSE and % var are presented as 
auxiliary measures. The criterion of fit was maximum likelihood. 

was that it largely underpredicted correct classification prob- 
abilities for Color 2 in Condition E2 and Color 7 in Condition 
E7. 

Because manipulating presentation frequencies of  the in- 
dividual exemplars results in changes in a priori probabilities 
of the categories, a plausible hypothesis is that there may have 
been changes in category response bias across the three con- 
ditions (Busemeyer, Dewey, &Medin ,  1984; Parducci, 1974). 
To test this possibility, five-parameter versions of  the models 
were fitted to the data in which the category bias parameter 
was allowed to vary across conditions. For the frequency- 
sensitive exemplar model, increasing the number of  free pa- 
rameters yielded essentially no improvement in fit, and the 
bias parameter remained essentially constant at b~ = .61 across 
the three conditions. The additional bias parameters slightly 
improved the fit of  the frequency-insensitive exemplar model, 
but it still performed markedly worse than the frequency- 
sensitive model. The important  point is that manipulating 
presentation frequencies of the individual exemplars appears 
to have led to changes in local classification probabilities 
rather than global changes in overall category response bias. 

A few comments  are in order regarding interpretation of 
the best-fitting exemplar model parameters. The scale param- 
eter c is simply an overall sensitivity parameter. Its estimated 
value in the present classification conditions is close to the 
value observed in Nosofsky's (1987) identification condition 
at a similar stage in learning. The value w~ = .67 indicates 
that subjects had a tendency to differentially weight the satu- 
ration dimension relative to the brightness dimension in their 
classification learning. It should be acknowledged that this 
tendency was unanticipated because the saturation and bright- 
ness dimensions appear to be equally relevant in defining the 
"pink-brown" category structure. Finally, the value b~ = .61 
indicates a bias toward making Category 1 responses relative 
to Category 2 responses (after the effect of similarity compar- 
isons to the stored exemplars). In Nosofsky's (1987) identifi- 
cation learning study, it was found that individual bias param- 
eters associated with the "brownish" stimuli were generally 
larger than those associated with the "pinkish" stimuli (see 
Nosofsky, 1987, Table 3). The Category 1 bias in the present 
experiment may be reflecting this differential "stimulus bias." 

As a source of  comparison, central-tendency prototype 
models were fitted to the classification learning data (Franks 
& Bransford, 1971; Reed, 1972; see Nosofsky, 1987, for a 
precise formalization of the models in the present context). 

Both frequency-insensitive and frequency-sensitive versions 
were formulated. In the frequency-sensitive version, the cat- 
egory central tendency is computed by using a weighted 
average over the coordinate values associated with each of the 
individual exemplars. Thus, the central tendency is shifted in 
the direction of  the highest-frequency exemplars. Both the 
frequency-sensitive and frequency-insensitive prototype 
models performed considerably worse than the frequency- 
sensitive exemplar model (average - I n  L = 286.6). In line 
with previous research, the exemplar model appears to pro- 
vide a better quantitative account of  classification learning 
than do prototype models, at least in situations in which 
category sizes are small and experience with individual ex- 
emplars is extensive ( M e d i n &  Schaffer, 1978; Nosofsky, 
1986, 1987). 

Typicality Ratings and Pair Comparisons 

The Pearson product-moment correlations between the 
frequency-sensitive exemplar model predicted Category 2 re- 
sponse probabilities and the mean typicality ratings were .953, 

Table 5 
Predicted and Observed Category 2 Response Probabilities 
in Block 3 of Classification Learning 

Experiment 1: Experiment 2: 
Condition Condition 

Color B E2 E7 B E6(3) E6(5) 

1 
PP .130 
OP .210 

2 
PP .941 
OP .925 

3 
PP .597 
OP .480 

4 
PP .938 
OP .915 

5 
PP .127 
OP .105 

6 
PP .725 
OP .714 

7 
PP .898 
OP .940 

8 
PP .148 
OP .106 

9 
PP .727 
OP .698 

10 
PP .027 
OP .030 

11 
PP .084 
OP .080 

12 
PP .102 
OP .205 

.163 .135 .111 .137 .158 

.251 .259 .224 .249 .229 

.983 .945 .953 .956 .959 

.996 .930 .951 .915 .925 

.636 .608 .610 .666 .704 

.640 .550 .523 .640 .655 

.962 .949 .950 .956 .960 

.995 .970 .975 .955 .971 

.143 .134 .110 .153 .188 

.095 .110 .071 .157 .154 

.751 .754 .743 .870 .909 

.767 .735 .804 .873 .957 

.905 .970 .914 .920 .925 

.865 .999 .944 .931 .921 

.162 .166 .128 .213 .275 

.095 .099 .060 .114 .127 

.737 .803 .745 .779 .802 

.668 .754 .694 .715 .780 

.029 .031 .019 .032 .043 

.035 .020 .020 .050 .020 

.089 .120 .070 .096 .119 

.045 .060 .049 .120 .045 

.106 .166 .085 .104 .120 

.180 .203 .195 .186 .096 

Note. PP = predicted probability; OP = observed probability. 
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.975, and .960 in Conditions B, E2, and E7, respectively. The 
corresponding Spearman rank-order correlations were .902, 
.967, and .921. 

I do not attempt to provide quantitative predictions of the 
typicality pair comparisons in this article. As an initial gauge 
of the adequacy of the frequency-sensitive exemplar model, 
however, one can compare the direction of each pair-com- 
parison judgment to the classification-predicted direction. For 
example, the exemplar model predicts that in the baseline 
Condition B, Color 2 will be classified in Category 2 with 
probability .941, whereas Color 3 will be classified in Category 
2 with probability only .597. In agreement with this predic- 
tion, Color 2 was judged as a better example of Category 2 
than was Color 3 by 45 of the 50 subjects in Condition B. 
The exemplar model predicts correctly the direction of all 15 
pair comparisons in Condition B, 14 of 15 pair comparisons 
in Condition E2, and 14 of 15 pair comparisons in Condition 
E7. Furthermore, the single discrepancies in Conditions E2 
and E7 are small in magnitude. For example, in Condition 
E2 the predicted Category 2 response probabilities for Colors 
6 and 9 were .751 and .737, respectively; Color 6 was chosen 
as a better example of Category 2 than was Color 9 by 24 of 
the 50 subjects. At least at a qualitative level, the exemplar 
model predicts quite well the pattern of typicality pair-com- 
parison data. 

Experiment 2 

Whereas Experiment 1 manipulated presentation frequen- 
cies of "good" exemplars, Experiment 2 manipulates presen- 
tation frequency of a relatively "poor" exemplar, namely 
Color 6. Across three conditions, Color 6 is presented with 
relative frequencies approximately 1:1, 3:1, and 5:1. One 
purpose of the experiment is to test whether presentation 
frequency plays a role for relatively atypical exemplars. I also 
test another prediction of the frequency-sensitive, similarity- 
to-exemplars model, namely that classification accuracy and 
typicality judgments should decrease for members of contrast 
categories that are similar to high-frequency exemplars. As 
shown in Figure l, Color 8 of Category 1 is a close neighbor 
of Color 6. The expectation is that Color 8 will be rated as a 
poorer example of Category 1 as presentation frequency for 
Color 6 increases. The other predictions are analogous to 
those for Experiment 1. Color 6 should be rated as a more 
typical member of Category 2 as its presentation frequency 
increases. Colors 3 and 9 are fairly similar to Color 6 (although 
not as similar as the 2-4 and 7-9 couplets studied in Experi- 
ment 1), and so one might observe increases in typicality for 
these relatively poor exemplars as well. 

Method 

Discussion 

The results of Experiment 1 support the suggestion that 
similarity and frequency jointly determine graded category 
structure. Classification accuracy and typicality ratings in- 
creased for high-frequency exemplars, and also increased for 
category members that were similar to the high-frequency 
exemplars. The theoretical analysis provided support for the 
exemplar-based approach to representing the joint influence 
of these variables. 

A potential problem of interpretation concerns the relation 
between degree of classification learning of individual exem- 
plars and the typicality judgments. As presentation frequency 
increases, there is presumably a higher probability of learning 
the association between a given exemplar and its category 
assignment. Could changes in typicality judgments simply 
have been reflecting differences in the probability with which 
individual exemplar-category associations had been formed? 
At least under the present experimental conditions, such an 
explanation taken by itself seems implausible. The critical 
exemplars in Experiment 1 were "good" exemplars that had 
extremely high probabilities of correct classification by the 
end of learning, regardless of whether they had been presented 
with high frequency. Across all conditions, the average num- 
ber of subjects who misclassified Exemplars 2, 4, and 7 in the 
transfer phase were 1.67, 0.67, and 2.67, respectively. Al- 
though the probability of forming correct exemplar-category 
associations will certainly influence typicality judgments, it is 
unlikely that this was the sole controlling factor in the present 
experiment. Presentation frequency influenced the pattern of 
typicality data even for well-learned exemplars. 

Subjects 

A total of 150 subjects, most of whom were undergraduates at 
Indiana University, were hired for participation in the experiment; 
50 subjects participated in each of three conditions. 

Stimuli 

The stimuli were the same as in Experiment 1. Four tokens of each 
color were used in Conditions B, E6(3), and E6(5); 12 and 19 tokens 
of Color 6 were used in Conditions E6(3) and E6(5), respectively. 
Note that Condition B was an independent replication of the baseline 
condition tested in Experiment 1. 

Table 6 
Proportion of Classification Learning Errors for Each Color: 
Experiment 2 

Condition 

Color B E6(3) E6(5) 
1 .320 .332 .288 
2 .084 .155 .141 
3 .471 .420 .415 
4 .081 .1t8 .119 
5 .164 .195 .190 
6 .239 .208 .123 
7 .120 .167 .157 
8 .132 .168 .167 
9 .390 .328 .336 

10 .088 .115 .087 
11 .134 .169 .108 
12 .275 .254 .182 
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Table 7 

Mean Typicality Ratings: Experiment 2 

Condition 

Color B E6(3) E6(5) 

1 -3.08 -2.36 -2.80 
2 7.48 7.40 6.70 
3 1.32 1.14 1.76 
4 8.34 7.12 7.58 
5 -6.84 -5.90 -5.58 
6 3.18 4.34 5.76 
7 7.64 7.00 6.68 
8 -7.04 -5.30 -3.84 
9 2.68 3.24 4.78 

10 -9.34 -8.72 -8.72 
11 -6.06 -5.66 -8.18 
12 -4.10 -3.02 -6.38 

Note. - 10 = Category 1 most typical, + 10 = Category 2 most typical. 

may be reflecting some form of  "response contrast" effect 
(Helson, 1964; Parducci, 1974). 

Typicality Pair Comparisons 

The results of  the typicality pair-comparison task are shown 
in Table 8. Once again, "good" Colors 2, 4, and 7 tend to 
dominate "poor" Colors 3, 6, and 9. The more interesting 
result is that typicality preferences for poor Exemplars 6, 3, 
and 9 increased relative to the good Exemplars 2, 4, and 7 as 
presentation frequency of  Color 6 was increased. Chi-square 
tests of  independence conducted for each pair of colors across 
Conditions B and E6(5) showed a significant effect of condi- 
tions for numerous pairs of colors. Unexpectedly, however, 
typicality preference for Color 6 did not increase relative to 
its neighbors Colors 3 and 9. 

Procedure 

All other aspects of the procedure were the same as for Experiment 
1. 

Results 

Classification Learning 

The proportion of  classification learning errors for each 
color in each condition is shown in Table 6. The main results 
of interest are that classification errors for Color 6 decreased 
across Conditions B, E6(3), and E6(5), and to a smaller extent 
decreased for Colors 3 and 9. There was a small increase in 
the proportion of errors for Color 8 across conditions. Al- 
though these trends are in the predicted directions, separate t 
tests using the Conditions B and E6(5) data revealed that only 
the changes for Color 6 were statistically significant, t(98) = 
3.83, p < .001. 

Typicality Ratings 

The mean typicality ratings are shown in Table 7. The 
general pattern of  ratings for individual stimuli within each 
condition mirrors the pattern observed in Experiment 1, with 
Colors 2, 4, 7, and 10 being rated as the most typical members 
of  their categories, and Colors 1, 3, 6, 8, 9, and 12 (close to 
the category boundary) being rated the least typical. Mean 
typicality ratings also interacted with learning conditions. As 
presentation frequency for Color 6 increased, Colors 6, 3, and 
9 were rated as more typical members of  Category 2, whereas 
Color 8 was rated as a less typical member of  Category 1. 
Results of  t tests revealed that the changes in typicality ratings 
across Conditions B and E6(5) were statistically significant for 
Colors 6, 8, and 9, average t(98) = 2.68, p < .01, but not for 
Color 3, t(98) = .38, p > .70. The t tests also revealed that 
Colors 11 and 12 were rated as significantly better examples 
of Category I in Condition E6(5) than in Condition B, average 
t(98) = 2.28, p < .05. This latter result was unanticipated, but 

Theoretical Analysis 

Classification 

The three-parameter, frequency-sensitive exemplar model 
was fitted simultaneously to the Block 3 classification data 
obtained in Conditions B, E6(3), and E6(5) by using a maxi- 
mum-likelihood criterion. The best-fitting parameters and 
summary fits are shown in Table 4 and the predicted and 
observed Category 2 response probabilities are shown in Table 
5. The model accounts for 97.6% of  the response variance, 

Table 8 
Frequency With Which Row Stimulus Was Selected as a 
Better Example of Category 2 Than Was Column Stimulus." 
Experiment 2 

Color 
Color and 
Condition 2 3 4 6 7 9 

B - -  48 29 45 29 44 
E6(3) - -  42 18 40 24 36 
E6(5) - -  38 19 30 21 32 

B 2 - -  1 17 9 22 
E6(3) 8 - -  7 16 8 19 
E6(5) 12 - -  9 16 10 22 

B 21 49  - -  4 8  28  46 
E6(3) 32 43 - -  41 26 37 
E6(5) 31 41 - -  36 23 36 

B 5 33 2 - -  6 30 
E6(3) 10 34 9 - -  6 25 
E6(5) 20 34 14 - -  t5 30 

B 21 41 22 44 - -  49 
E6(3) 26 42 24 44 - -  42 
E6(5) 29 40 27 35 - -  39 

B 6 28 4 2 0  1 
E6(3) 14 31 13 25 8 
E6(5) 18 28 14 20 11 

m 

m 

m 

Note. Entry in cell (i,j) plus entry in cell (j,i) equals 50. 
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and predicts correctly the trends of increasing classification 
accuracy for Colors 3, 6, and 9 across Conditions B through 
E6(5), and decreasing classification accuracy for Color 8. Note 
that the values of the best fitting parameters are very close to 
those estimated for the conditions in Experiment 1. Thus, the 
frequency-sensitive exemplar model traces the changes in 
classification patterns across conditions with a fair degree of 
parameter invariance. As in Experiment 1, allowing the cat- 
egory bias parameter to vary across conditions did not signif- 
icantly improve the fit of the frequency-sensitive exemplar 
model. And once again, the frequency-sensitive exemplar 
model considerably outperformed all the alternative models 
in terms of overall fit. 

Typicality Ratings and Pair Comparisons 

The Pearson product-moment correlations between the 
exemplar model predicted Category 2 response probabilities 
and observed typicality ratings were .972, .964, and .982, in 
Conditions B, E6(3), and E6(5), respectively. The correspond- 
ing Spearman rank-order correlations were .883, .918, and 
.958. The exemplar model correctly predicts the direction of 
14 of 15 pair comparisons in Condition B, 12 of 13 pair 
comparisons in Condition E6(3) (two ties), and 14 of 15 pair 
comparisons in Condition E6(5). (The single discrepancies in 
each condition are all small in magnitude.) 

Note that the exemplar model predicts correctly that people 
will judge Color 6 as a poorer example of Category 2 than 
Colors 2, 4, and 7, although Color 6 was presented five times 
as often as these other colors. Theoretically, Color 6 would 
have had to have been presented approximately 12 times as 
often as these other colors before it achieved "equal typicality 
status. ,,3 

Discussion 

The results of Experiment 2 extend those of Experiment 1 
by showing that frequency manipulations can influence typi- 
cality gradients associated with relatively poor exemplars as 
well as good exemplars, and can also influence typicality 
gradients of contrast categories. The principle interpretation 
of the present results is that increasing the presentation fre- 
quency of Color 6 led to increasing the relative frequency 
with which this exemplar was stored in memory. Another 
possibility is that the frequency manipulations led to more 
differentiated perceptual representations in the region of Color 
6 (e.g., Gibson & Gibson, 1955; Krumhansl, 1978; Nosofsky, 
1987). Or, perhaps the boundary separating Categories 1 and 
2 became sharper. It is unclear, however, why increasing 
perceptual differentiation in the region of Color 6 would lead 
to Color 8 being judged as a worse example of Category 1. 
Although increasing perceptual differentiation as a function 
of frequency or category density is likely to be part of the 
story, other factors also appear to be operating in the present 
experiments. 4 

General  Discussion 

Summary 

The hypothesis motivating this research was that similarity 
and frequency information are jointly reflected in people's 
category representations and that both variables influence 
graded category structure. This hypothesis was tested by con- 
ducting classification learning experiments in which presen- 
tation frequency of exemplars was manipulated. The exem- 
plars had varying degrees of similarity to other members of 
the target and contrast categories. The main qualitative results 
supported the hypothesis. Classification accuracy and typical- 
ity ratings increased for exemplars that were presented with 
high frequency and increased for members of the target cate- 
gory that were very similar to the high-frequency exemplars. 
Classification accuracy and typicality ratings decreased for 
members of the contrast category that were similar to the 
high-frequency exemplars. 

The second focus of this research was to test a model for 
interpreting the joint roles of similarity and frequency infor- 
mation. The conceptual underpinning of the approach is the 
assumption that people learn categories by storing individual 
exemplars in memory. Classification decisions are based on 
similarity comparisons to the stored exemplars. Frequency 
information is represented naturally in the model in terms of 
the differential frequency with which individual exemplars 
are stored in memory. The frequency-sensitive exemplar 
model provided a good quantitative account of the classifi- 
cation learning data and of postacquisition typicality ratings. 
Quantitative comparisons favored the predictions of the 
model over those of a frequency-sensitive prototype model, 
and frequency-insensitive exemplar and prototype models. A 
number of other classification models also appear well 
equipped to handle the joint roles of similarity and frequency, 
but leave unspecified the precise format of the stimulus rep- 
resentation needed for making quantitative predictions (e.g., 
Eich, 1982; Hintzman, 1986; Knapp & Anderson, 1984). The 
data reported in this article should provide a fertile testing 
ground for these alternative models. 

Unresolved Issues and Questions 

Although this work provides preliminary support for the 
exemplar approach to modeling the roles of similarity and 

3This computation assumes a continued linear relation between 
actual frequency and represented frequency of the exemplars. Buse- 
meyer, Dewey, and Medin (1984, p. 646) suggested, however, that 
the relation between represented and actual frequency may be nega- 
tively accelerated, in which case an even greater relative frequency 
would be required for Color 6 before it achieved equal typicality 
status. 

4 The notion of increasing perceptual differentiation may help 
explain why even the frequency-sensitive exemplar model underpre- 
dicted correct classification probabilities for the high-frequency ex- 
emplars in Experiment l (see Table 5). A fully specified model will 
also need to account for memorial sequential effects induced by the 
differential presentation frequencies. 
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frequency in classification learning, it is important to point 
out limitations of the approach and new questions that are 
raised. 

Frequency 

First, it seems useful to distinguish between different kinds 
of frequency information. Barsalou (1985) distinguished be- 
tween the overall subjective frequency with which a person 
has experienced an object and the subjective frequency with 
which the person has experienced the object as an example of 
a particular category. The present research was concerned 
with the latter kind of category-instantiated frequency. Al- 
though correlational work has been reported, the potential 
effect of overall frequency and familiarity, independent of 
category assignment, has apparently not yet been studied in 
an experimentally controlled manner. It also seems important 
to distinguish between the frequency with which a specific 
exemplar is experienced and the frequency with which a class 
of exemplars is experienced. For example, one's judgment of 
how typical rabbits are of the category rodents may differ 
dramatically depending on whether the person has frequently 
experienced one particular rabbit (e.g., his or her pet) or a 
large number of different rabbits. 

Although useful for an initial investigation, the baseline 
model tested in this research undoubtedly gives an oversim- 
plified picture of the relation between psychological and actual 
frequency. As Tversky and Kahneman (1973) have made well 
known, for example, judged frequency may vary dramatically 
depending on the retrievability and availability of the in- 
stances. Other issues of concern include the nature of memory 
decay of individual exemplars over time, and sequential ef- 
fects induced by differential presentation frequencies. A fully 
specified model will need to incorporate these factors when 
characterizing the role of frequency information in classifi- 
cation learning. 

Similarity and Frequency 

The present research emphasized the joint, interactive roles 
of similarity and frequency in determining graded category 
structure. It is important to realize, however, that similarity 
and frequency can exert mutual influence on one another, 
thereby making more intricate the relation between similarity, 
frequency, and categorization. It has been suggested, for ex- 
ample, that increasing the frequency of a given stimulus may 
lead to increasing perceptual differentiation in the region of 
that stimulus. In previous research, Medin and his associates 
(Medin, Dewey, & Murphy, 1983; Medin & Schaffer, 1978; 
Medin& Smith, 1981) and Nosofsky (1984, 1986, 1987) 
emphasized the role of selective attention in modifying simi- 
larity relations among exemplars. Differential frequency in- 
formation may lead to certain selective attention strategies 
benefiting classification performance more than others. Thus, 
frequency may modify similarity relations because of the 
influence of selective attention. Luce, Green, and their asso- 
ciates have provided evidence for a selective attention mech- 
anism that monitors local regions of psychological dimensions 

(Luce, Green, & Weber, 1976). Changes in sensitivity resulting 
from sequential dependencies and differential presentation 
frequencies have been interpreted in terms of systematic shifts 
of this band of selective attention (Luce & Nosofsky, 1984; 
Luce, Nosofsky, Green, & Smith, 1982; Nosofsky, 1983). 

Just as frequency may influence similarity, so may similar- 
ity relations influence frequency judgments. Kahneman and 
Tversky (1972) demonstrated that people often judge the 
probability of an event according to how similar it is to the 
essential characteristics of its population. Use of this "repre- 
sentativeness" heuristic can lead to systematic biases in prob- 
ability judgment, such as ignoring base rates. A related effect 
of the influence of similarity on frequency judgments was 
observed in the present study. Following the postacquisition 
typicality judgments in Experiment 1, subjects were presented 
with all exemplars of Category 2 in a pseudorandom arrange- 
ment. They were asked to rank the exemplars according to 
the frequency with which they had been presented during the 
classification learning phase. As expected, Colors 2 and 7 were 
ranked first in Conditions E2 and E7, respectively. The more 
interesting result is that Color 4, which was highly similar to 
Color 2, was ranked second in Condition E2; whereas Color 
9, which was highly similar to Color 7, was ranked second in 
Condition E7. (The differences in these rank orderings were 
highly reliable.) The similarity relations among the stimuli 
apparently led to the development of differential "frequency- 
generalization" gradients. An interesting question for'future 
research concerns the locus of the effect: For example, does it 
reside in the storage of differential frequency information or 
in decision factors operating at the time of retrieval? 

Relations Between Classification and Typicality 

A noteworthy feature of the results reported in this article 
was the close correspondence between the context model 
predicted classification probabilities and the observed typical- 
ity pair comparisons. Because the context model assumes that 
classification is determined by relative degree of within-cate- 
gory to between-category similarity, the suggestion is that 
both kinds of similarity relations influenced the typicality 
judgments. Indeed, between-category similarity was even 
more important than within-category similarity in the base- 
line (equal-frequency) conditions tested in the present exper- 
iments. Colors 2, 4, and 7 were "good" exemplars mainly 
because they were less similar to members of the contrast 
category than were "poor" Exemplars 3, 6, and 9. The sug- 
gestion that both within-category and between-category sim- 
ilarity relations influence typicality converges with earlier 
conclusions reached by Rosch and Mervis (1975). 

Previous studies have sometimes shown some divergence 
between classification probability and typicality ratings. 
Bourne (1982), for example, reported a concept-learning ex- 
periment in which the assignment of a "prototype" stimulus 
to either the target or contrast categories was manipulated 
probabilistically across conditions. Interestingly, there were 
some conditions in which the "prototype" was rated as a 
better example of the target category than was a comparison 
stimulus, yet was classified by subjects into the target category 
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with lower probability than the comparison stimulus. Nosof- 
sky (1988) showed that a single-parameter version of the 
frequency-sensitive context model could account qualitatively 
for Bourne's classification and typicality data, as long as it 
was assumed that typicality judgments were based only on 
summed within-category similarity, rather than on relative 
degree of within-category to between-category similarity. 
"Typicality" is an open-ended construct, and the interpreta- 
tion given to it by people apparently may vary depending on 
instructions and experimental conditions. Nevertheless, typi- 
cality judgments often admit  of  a high degree of  regularity 
and structure, and can provide useful clues into the nature of  
people's category representations. 

Limits to Generalizability 

The present study was concerned with graded category 
structure as it arises in tasks of perceptual classification learn- 
ing. Whether similar results will be obtained in other domains 
remains an open question. Barsalou (1985), for example, 
provided evidence that similarity relations among exemplars 
are relatively unimportant  in determining the graded structure 
of  "goal-derived" categories such as "things to do for weekend 
entertainment." Of particular interest is the question of  the 
generalizability of these results to the domain of"conceptual"  
categorization, where the influence of  real world knowledge 
and implicit "theories" seems crucial (Murphy & Medin, 
1985). Unfortunately, it is difficult to exercise careful experi- 
mental control on the relevant variables in this arena. The 
complex psychological structures that underlie most "concep- 
tual" domains and that determine interobject similarity rela- 
tions generally remain unspecified. Nevertheless, it is reason- 
able to posit that just as in perceptual classification, the 
fundamental variables of  frequency and similarity function 
along with other variables in determining the graded structure 
of  many conceptual categories. 
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Cutting Appointed Editor of JEP: Human Perception and Performance, 
1989-1994 

The Publications and Communicat ions Board of the American Psychological Association 
announces the appointment  of James E. Cutting, Cornell University, as editor of the Journal 
of  Experimental Psychology: Human Perception and Performance for a 6-year term beginning 
in 1989. The current editor, William Epstein, will be receiving submissions through Septem- 
ber 30, 1987. At that point, the 1988 volume will have been filled, and all submissions after 
that should be sent to James Cutting. Therefore, as of October 1, 1987, manuscripts should 
be directed to: 

James E. Cutting 
Department of  Psychology 

Uris Hall 
Cornell University 

Ithaca, New York 14853-7601 


