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Central tendencies, extreme points, and prototype
enhancement effects in ill-de� ned perceptual

categorization
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In three perceptual classi� cation experiments involving ill-de� ned category structures, extreme
prototype enhancement effects were observed in which prototypes were classi� ed more
accurately than other category instances. Such empirical � ndings can prove theoretically
challenging to exemplar-based models of categorization if prototypes are psychological central
tendencies of category instances. We found instead that category prototypes were sometimes
better characterized as psychological extreme points relative to contrast categories. Extending a
classic and widely cited study (Posner & Keele, 1968), participants learned categories created
from distortions of dot patterns arranged in familiar shapes. Participants then made pairwise
similarity judgements of the patterns. Multidimensional scaling (MDS) analyses of the similar-
ity data revealed the prototypes to be psychological extreme points, not central tendencies.
Evidence for extreme point representations was also found for novel prototype patterns dis-
playing a symmetry structure and for prototypes of grid patterns used in recent studies by
McLaren and colleagues (McLaren, Bennet, Guttman-Nahir, Kim, & Mackintosh, 1995).
When used in combination with the derived MDS solutions, an exemplar-based model of cate-
gorization, the Generalized Context Model (Nosofsky, 1986), provided good � ts to the observed
categorization data in all three experiments.

One of the major research paradigms used for investigating perceptual categorization has
been the dot-pattern prototype-distortion task introduced by Posner and Keele (1968,
1970). In this task, prototype dot patterns are created, and participants are trained to
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categorize statistical distortions of these prototypes. During transfer, old distortions, new
distortions, and the prototypes are presented to be classi� ed without feedback. As discussed,
for example, by Homa (1984), a major advantage of these experiments is that the dot
patterns are essentially in� nitely variable and have a highly complex dimensional structure,
so that the properties of the arti� cial categories that are created may mimic those of many
natural categories.

The dot-pattern paradigm has been used to systematically investigate the effects of
numerous fundamental variables on category learning and transfer, including effects of cate-
gory size (e.g., Breen & Schvaneveldt, 1986; Homa & Vosburgh, 1976; Posner & Keele, 1968;
Shin & Nosofsky, 1992), category variability (e.g., Barresi, Robbins, & Shain, 1975; Homa,
1978; Homa & Vosburgh, 1976; Posner & Keele, 1968), instance frequency (e.g., Homa,
Dunbar, & Nohre, 1991; Shin & Nosofsky, 1992), number of categories learned (e.g.,
Homa & Chambliss, 1975), amount of training (e.g., Homa et al., 1991; Homa, Goldhardt,
Burruel-Homa, & Smith, 1993), and delay between training and transfer (e.g., Homa, Cross,
Cornell, Goldman, & Schwartz, 1973; Posner & Keele, 1970; Strange, Kenney, Kessel, &
Jenkins, 1970). In addition, the paradigm has been used to investigate the relationship
between categorization and old–new recognition memory (e.g., Homa et al., 1993; Metcalfe
& Fisher, 1986; Onohundro, 1981; Shin & Nosofsky, 1992; Vandierendonck, 1984) and has
also served as a fundamental testing ground for investigating neuropsychological aspects of
categorization (e.g., Knowlton & Squire, 1993; Kolodny, 1994; Nosofsky & Zaki, 1998;
Palmeri & Flanery, 1999; Reber & Squire, 1997; Reber, Stark, & Squire, 1998; Squire &
Knowlton, 1995). Indeed, the dot-pattern paradigm has provided bedrock data for evaluat-
ing numerous theories of categorization and memory including prototype models (e.g.,
Busemeyer, Dewey, & Medin, 1984; Homa, Sterling, & Trepel, 1981), distributed memory
models (e.g., Knapp & Anderson, 1984; Metcalfe, 1982), connectionist models (e.g.,
McClelland & Rumelhart, 1985), and exemplar models (Hintzman, 1986; Nosofsky, 1988;
Shin & Nosofsky, 1992).

One of the most salient aspects of dot-pattern studies is a well-known effect called proto-
type enhancement. On average, category prototypes that are not experienced during training
are typically classi� ed during transfer as well as, and sometimes somewhat better than, the
old category instances, and better than new category instances. Although such prototype
enhancement effects were originally believed to provide solid evidence for the existence of
prototype abstraction processes, theoretical work has shown that pure exemplar retrieval
models can account for this phenomenon as well (e.g., Busemeyer et al., 1984; Hintzman,
1986; Hintzman & Ludlam, 1980; Nosofsky, 1988, 1992; Shin & Nosofsky, 1992). It may
seem paradoxical that models that assume that categories are represented solely in terms of
stored exemplars can account for enhanced classi� cation of unseen prototypes. The key
intuition is that, although any given old exemplar is highly similar to itself, it may not be
very similar to any other old exemplars. By contrast, prototypes are typically similar to many
other exemplars stored in memory. The similarity of prototypes to numerous stored exem-
plars makes up for the lack of stored representations for the prototypes themselves.

Shin and Nosofsky (1992) demonstrated an approach to modelling detailed aspects of
dot-pattern classi� cation performance that combined an exemplar-based model of cate-
gorization, the Generalized Context Model (GCM; Nosofsky, 1986), with multidimensional
scaling (MDS) techniques (Shepard, 1980). The stimuli they used were typical of most
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random-dot-pattern studies. Random prototypes were generated for each category, and
statistical distortions of these prototypes were created as category instances (Posner,
Goldsmith, & Welton, 1967). Some of these distortions were designated as training patterns
and some were designated as transfer patterns. In their studies, all participants learned to
classify the same set of patterns. Over numerous trials, participants learned to classify the
training patterns with corrective feedback. During transfer, they classi� ed the training
patterns, transfer patterns, and category prototypes without feedback. Across three experi-
ments, Shin and Nosofsky examined effects of several fundamental learning variables on
categorization, including level of distortion of patterns, category size, delay of the transfer
phase, and individual item frequency. Their primary goal was to assess whether a pure
exemplar-based model could account for the observed classi� cation results of whether
prototype abstraction processes needed to be assumed as well.

Several previous attempts to model dot-pattern classi� cation have used randomly gener-
ated multi-element stimulus vectors as inputs to simulation models (e.g., Hintzman, 1986;
Knapp & Anderson, 1984; Metcalfe, 1982; Nosofsky, 1988). Although such representations
are intended to capture some elements of the physical instantiation of the dot-pattern stimuli,
they may fail to capture the true psychological relationships among these complex patterns.
Moreover, these methods allow only gross-level predictions to be made, such as predictions
of average classi� cation performance for the prototypes and old and new distortions.
Instead, as a more detailed test of various competing models, Shin and Nosofsky (1992)
aimed to account for the classi� cation performance of particular instances, not just average
classi� cation of particular types of stimuli. In their experiments, participants provided pair-
wise similarity ratings of the dot patterns. These similarity rating data were then analysed
using standard MDS techniques to obtain a psychological scaling solution for the stimuli.
The derived scaling solution was used in conjunction with the GCM, a prototype model,
and a mixed model to account for the observed classi� cation data. Theoretical analyses
revealed little evidence for the existence of a prototype abstraction process that operated
above and beyond pure exemplar-based generalization. Among other qualitative and quan-
titative predictions, the pure exemplar-based model could account for the prototype
enhancement effects that Shin and Nosofsky observed.

It is important to note that many reported cases of prototype enhancement in experi-
ments using the dot-pattern paradigm have compared classi� cation accuracy for category
prototypes relative to the average classi� cation accuracy for other category instances; in
those articles that report classi� cation probabilities for individual stimuli, the prototype is
not the best classi� ed item overall. For example, the degree of prototype enhancement
reported by Shin and Nosofsky (1992) was not very large, and many old category instances
were classi� ed more accurately than the category prototypes. A potential challenge for the
GCM and other exemplar models is whether or not they could ever predict an extreme proto-
type enhancement effect in this paradigm, in which the prototypes are classi� ed signi� cantly
more accurately than other category instances.

An observation of extreme prototype enhancement could provide a serious challenge to
the GCM and other exemplar models. According to many theories of perceptual cate-
gorization, including the GCM, objects are represented as points in a multidimensional
psychological space (e.g., Ashby, 1992; Homa, 1984; Nosofsky, 1986; Reed, 1972; Shepard &
Chang, 1963). It is natural to assume that category prototypes in dot-pattern studies, as well
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as other experimental paradigms, are psychological as well as physical central tendencies of
category instances (Homa, 1984; Homa et al., 1981; Nosofsky, 1987; Posner, 1969; Reed,
1972; Rosch, 1975b, 1978; Smith & Medin, 1981). For example, in summarizing the results
of Posner and Keele’s (1968, 1970) studies, Anderson (1980, p. 140, 142) wrote: “One of the
most impressive demonstrations of subjects’ ability to extract the central tendency of a set
of instances is a series of experiments performed by Posner and Keele (1968, 1970). . . . The
prototype for Posner’s dot patterns would have been the average of the studied dot patterns.”
This assumption about a central-tendency representation for the prototypes has been
largely con� rmed in multidimensional scaling studies involving randomly generated proto-
types (Homa, 1984; Homa, Rhoads, & Chambliss, 1979; Shin & Nosofsky, 1992).
Simplifying the multidimensional representation of the patterns somewhat, the left panel of
Figure 1 depicts category prototypes (cA, cB, and cC) as psychological central tendencies of
the category instances. A key point is that if the category prototypes are indeed central
tendencies in psychological space as well as being physical central tendencies of category
instances, then the GCM cannot predict an extreme prototype enhancement effect. Instead,
category instances lying in extreme regions of the psychological space (relative to the con-
trast categories) will tend to be classi� ed more accurately than the central prototypes, as is
illustrated later.

An alternative possibility, however, to be explored in the present research, is that proto-
types that are physical central tendencies of category instances may sometimes reside not as
psychological central tendencies, but rather as psychological extreme points relative to the
category instances. The right panel of Figure 1 depicts a situation in which physical cate-
gory central tendencies may be represented as extreme points (eA, eB, and eC) in the
psychological space relative to the category instances. Under such conditions, the GCM
does predict extreme prototype enhancement, as illustrated next.1

To illustrate how predictions of the GCM can vary depending on whether the prototypes
are central tendencies or extreme points, we generated predictions of the model based on
the idealized con� guration shown in the left panel of Figure 2. We compared predicted classi-
fication accuracy for “close” exemplars, which are close to members of contrast categories,
“far” exemplars, which are far from members of contrast categories, central-tendency
prototypes, and extreme-point prototypes. The right panel of Figure 2 shows predicted
classi� cation accuracy for each of these types of stimulus across a range of parameter values
(this theoretical analysis allowed the sensitivity parameter, c, which scales distances between
instances in psychological space, to vary across a range of values; we also assumed equal

1 Extreme prototype enhancement has often been observed in experimental paradigms involving discrete-
dimension stimuli. However, in experimental paradigms involving discrete dimensions, such as those initially tested
by Medin and Schaffer (1978), the interpretation of a prototype as a “central tendency” versus an “extreme point”
is unclear. Consider stimuli varying along four binary-valued dimensions. Suppose the prototypes of Categories A
and B are 1111 and 2222, respectively, and that category instances are generated by distorting these prototypes by
varying degrees (e.g., 1112 and 1121 might be examples of Category A, and 2221 and 2212 might be examples of
Category B). From one point of view, these prototypes can be viewed as “central tendencies”, in the sense that they
have the modal values on each dimension. However, these prototypes act as extreme points in the multidimensional
category structure as well. Therefore, one needs to test experimental paradigms with complex continuous-
dimension stimuli, such as dot patterns, to sharply distinguish between the roles of central tendencies and extreme
point representations in classi� cation.
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response biases for the three categories and assumed equal attention to both psychological
dimensions; see the discussion of the GCM following Experiment 1 for details of the
model). As shown in the � gure, the close exemplars were predicted to be classi� ed with
relatively low accuracy, and the far exemplars were predicted to be classi� ed with relatively
high accuracy. The GCM could not predict prototypes to be the best classi� ed items when
central-tendency representations were assumed—prototypes were always classi� ed with

Figure 1. A schematic illustration of central tendencies and extreme points in simpli� ed two-dimensional
psychological space. In both panels, three categories with six distortions each are depicted by the squares, circles,
and triangles. In the left panel, the prototypes (cA, cB, and cC) are central tendencies of the six distortions of their
category. In the right panel, the prototypes (eA, eB, and eC) are extremes relative to the six distortions of
their category and relative to the distortions of the other categories.

Figure 2. The left panel displays a schematic illustration of the psychological space used in the simulations
reported in the text. Grey symbols indicate close exemplars, black symbols indicate far exemplars, cA indicates a
central-tendency prototype, eA indicates an extreme-point prototype. The right panel displays the GCM predic-
tions for each of these four types of stimulus as a function of the sensitivity parameter of the model, c.
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intermediate accuracy. In these simulations, the failure to predict extreme prototype
enhancement with central tendency representations was observed regardless of whether the
prototypes were allowed to be old training items (a point that will be important when
reviewing the results of the � rst two experiments). However, the GCM could predict the
prototypes to be the best classi� ed items when extreme-point representations were assumed.
It is clear that the derived MDS solution is crucial to ascertain whether the GCM can or
cannot predict an observed pattern of extreme prototype enhancement. Certain “objective”
measures of pattern similarity, de� ned by such things as the average distances between dots
in pairs of patterns (e.g., Posner, 1969), are probably insuf� cient—using such measures of
similarity, the prototype, being a physical central tendency of category instances, would
always emerge as a psychological central tendency as well.

The potential importance of psychological extremes in categorization has been noted in
some other work. For example, Barsalou (1985, 1991) demonstrated the importance of ideal
points in highly conceptual domains involving goal-derived categories—the best example of
the category “foods to eat on a diet” is one with zero calories, not one with the average
caloric content of typical diet foods. In applications of their highly successful Fuzzy-Logical
Model of Perception (FLMP), Massaro and colleagues often tested paradigms in which the
stimuli varied along two clear continuous dimensions, and the prototypes to which people
compared objects were assumed to occupy extreme corners of the psychological space
(Massaro, 1987; Massaro & Friedman, 1990; Oden & Massaro, 1978)—note that in their
paradigms, the physically manipulated prototypes and their resulting psychological repre-
sentations were both extreme points. Although the potential importance of psychological
extremes in categorization has been suggested by the work of Barsalou, Massaro, and others
(e.g., Goldstone, 1993, 1996; Rosch, 1975b), the idea that a prototype that is a central tendency
in the physically de� ned space may emerge as an extreme point in the psychological space
has not previously been suggested. Although prototypes may indeed be physical central
tendencies of the distortions created from them, it does not necessarily follow that they are
psychological central tendencies as well. Rather, various emergent dimensions, based on
diagnostic con� gurations among elements of a complex physical stimulus such as a dot
pattern (e.g., Hock, Tromley, & Polmann, 1988), may be formed, which cause the prototypes
to be represented as psychological extremes within the context of learning particular
categories.

One goal of the present research was to document that extreme prototype enhancement
effects could be observed empirically. Whereas the prototypes that most recent experiments
have used were random dot patterns, in one of the original Posner and Keele (1968) studies,
highly recognizable dot patterns (e.g., a triangle, an M, and an F) were used as category
prototypes instead. We chose to use such recognizable patterns in the � rst experiment,
reasoning that their use as prototypes might offer an excellent chance of empirically observ-
ing an extreme prototype enhancement effect. Another goal of the present research was to
examine the nature of the psychological representations of the physical category prototypes:
Are they best characterized as psychological central tendencies or as psychological extreme
points? To assess this issue, participants provided pairwise similarity ratings among all
patterns in the set, and multidimensional scaling techniques were used to derive a psycho-
logical space for those patterns. If extreme prototype enhancement is observed and physical
prototypes are represented as psychological central tendencies, then the GCM and many
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other exemplar models would be falsi� ed. Finally, even if the prototypes are represented as
extreme points in the MDS solution, the question still arises as to what type of decision
model will provide the best account of the detailed classi� cation performance data. We
assessed this question by comparing the quantitative � ts of formal exemplar, prototype, and
mixed exemplar-plus-prototype models.

EXPERIMENT 1

This experiment was an extension of Posner and Keele’s (1968) classic study. Following
their design, the categories were based on prototype patterns formed in the shape of a tri-
angle, a plus, and an F.2 Category instances were distortions of those prototype patterns.
During training, participants learned to classify these instances with feedback. To increase
the likelihood of observing an extreme prototype enhancement effect, for one group of
participants the category prototypes were also presented during training (recall from the
simulations reported earlier that the inability of the GCM to account for extreme prototype
enhancement with central tendency representations was not modulated by the presence or
absence of prototypes during training). At transfer, participants were tested on old distor-
tions, new distortions, and prototypes. Extending the Posner and Keele design, participants
also made pairwise similarity judgements; multidimensional scaling techniques were used to
analyse the similarity data to derive the psychological coordinates for the patterns (Shin &
Nosofsky, 1992). The scaling solution should reveal whether the prototypes were central
tendencies or extreme points in the psychological space. Exemplar, prototype, and exemplar-
plus-prototype models were � tted to the observed categorization data to test whether a pure
exemplar-based model needed to be supplemented by special prototype abstraction
mechanisms.

Method

Participants

Participants were 280 undergraduates who received course credit. All were tested individually.

Stimuli

Patterns were composed of nine dots placed on a 50 3 50 grid. As shown in Figure 3, the three
prototype patterns were in the shape of a triangle, a plus, and an F. These prototypes � tted within the
centre 30 3 30 of the grid. From each prototype, nine moderate-level distortions (6 bits/dot) were
created by using a standard statistical distortion algorithm (Posner et al., 1967); this algorithm moves
each dot of the prototype pattern some small amount in a random direction. Six distortions were
selected as old training items, and three were selected as new transfer items. Stimuli were presented
on 14-in computer monitors.

2 Unlike Posner and Keele (1968), we used a plus instead of an M so that the prototype would belong to
different superordinate categories.
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Procedure

A standard category learning/transfer paradigm was used. During training, participants learned to
categorize the six training patterns from each category. In the prototype condition, participants also saw
the prototypes during training; in the no prototype condition, participants saw the prototypes only at
transfer. Patterns were presented once per block, in random order, for eight blocks. On each trial, a
pattern was presented and classi� ed as an A, B, or C. Corrective feedback was supplied for � ve
seconds or until the space bar was pressed. After an ITI of one second the next pattern was displayed.
The assignment of category to response key was randomized for every participant. Responses were
made by pressing labelled keys on a computer keyboard.

During transfer, all thirty patterns (one prototype, six old distortions, and three new distortions
from each category) were presented once per block, in random order, for three blocks. No corrective
feedback was provided.

Participants also rated the pairwise similarities among patterns. Because of the large number of
possible pairs, each participant rated only half of them (randomly selected for each participant). On
each trial, two patterns were presented side by side. Participants rated similarities by using a 10-point
scale (1 5 very dissimilar, 10 5 very similar).

Results

Categorization data analyses

The observed category response probabilities for each individual stimulus in the no
prototype and prototype conditions are reported in Table 1. A two-way repeated measures
analysis of variance (ANOVA) was conducted on the categorization accuracy data (the prob-
ability of classifying the item into the correct category) with no prototype vs. prototype as a
between-subjects factor and type (prototype, old, or new) as a within-subjects factor.
Accuracies for prototypes, old patterns, and new patterns in the no prototype and prototype
conditions are summarized in the left panel of Figure 4. Accuracy was higher in the proto-
type condition than the no prototype condition, F(1, 276) 5 94.12, MSE 5 0.06 (alpha was
set at .05 for all statistical tests reported in this paper). The effect of type was signi� cant,
F(2, 552) 5 261.16, MSE 5 0.02; planned comparisons revealed that prototypes were

Figure 3. The top part of the � gure shows the three prototype patterns used in Experiment 1. Under each proto-
type is an example of a moderate-level distortion created from that pattern.
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categorized more accurately than old instances, which were categorized more accurately
than new instances. A signi� cant two-way Prototype 3 Type interaction was observed,
F(2, 552) 5 96.86, MSE 5 0.02; in the prototype condition, prototypes were categorized
signi� cantly more accurately than old instances; however, in the no prototype condition,
prototypes were categorized roughly as accurately as old instances. In both conditions, new

TABLE 1
Observed and predicted categorization response probabilities for the no prototype and

prototype conditions in Experiment 1

Observed Generalized context model

No prototype Prototype No prototype Prototype

Stimulus P(T) P(P) P(F) P(T) P(P) P(F) P(T) P(P) P(F) P(T) P(P) P(F)

Triangles
TP .798 .088 .114 .926 .045 .029 .745 .122 .134 .903 .047 .049
T1 .774 .095 .131 .805 .093 .102 .774 .102 .124 .841 .074 .085
T2 .829 .071 .100 .912 .031 .057 .792 .095 .113 .860 .064 .076
T3 .429 .283 .288 .491 .264 .245 .447 .224 .329 .449 .229 .323
T4 .738 .119 .143 .810 .107 .083 .736 .136 .128 .800 .110 .090
T5 .862 .071 .067 .940 .048 .012 .813 .088 .099 .883 .057 .061
T6 .614 .136 .250 .690 .107 .202 .642 .149 .209 .691 .129 .180
Ta .602 .202 .195 .707 .155 .138 .637 .192 .170 .699 .171 .130
Tb .521 .219 .260 .502 .252 .245 .551 .192 .257 .607 .163 .231
Tc .462 .343 .195 .524 .343 .133 .560 .252 .187 .599 .250 .151

Pluses
PP .260 .555 .186 .038 .914 .048 .211 .522 .268 .025 .934 .041
P1 .217 .498 .286 .133 .588 .279 .224 .497 .279 .143 .639 .218
P2 .138 .607 .255 .088 .714 .198 .142 .568 .290 .091 .674 .235
P3 .162 .598 .241 .100 .779 .121 .179 .589 .232 .114 .703 .183
P4 .143 .610 .248 .074 .762 .164 .120 .670 .209 .071 .788 .141
P5 .131 .600 .269 .064 .652 .283 .151 .538 .312 .087 .639 .274
P6 .098 .710 .193 .062 .810 .129 .108 .704 .187 .062 .814 .124
Pa .164 .407 .429 .124 .507 .369 .220 .338 .441 .161 .415 .424
Pb .219 .390 .391 .143 .502 .355 .219 .427 .355 .167 .504 .329
Pc .138 .564 .298 .098 .669 .233 .144 .603 .253 .099 .709 .193

Fs
FP .243 .333 .424 .012 .052 .936 .177 .280 .543 .025 .053 .922
F1 .231 .305 .464 .162 .312 .526 .191 .280 .529 .125 .299 .576
F2 .074 .181 .745 .076 .183 .740 .108 .274 .618 .072 .243 .685
F3 .188 .174 .638 .129 .148 .724 .185 .196 .618 .113 .124 .763
F4 .271 .233 .495 .183 .181 .636 .213 .214 .573 .160 .201 .639
F5 .174 .274 .552 .152 .243 .605 .189 .214 .597 .132 .194 .674
F6 .105 .174 .721 .057 .095 .848 .127 .185 .688 .063 .096 .842
Fa .369 .219 .412 .291 .143 .567 .313 .240 .448 .243 .195 .561
Fb .150 .291 .560 .124 .255 .621 .168 .331 .501 .127 .312 .562
Fc .164 .381 .455 .148 .443 .410 .153 .471 .376 .122 .532 .346

Note: TP 5 prototype of triangle category; T1 5 old instance of triangle category; Ta 5 new instance of
triangle category. Category T 5 triangles; Category P 5 pluses; Category F 5 Fs.
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instances were categorized with the lowest accuracy. Note that the prototypes in the proto-
type condition were the best classi� ed of all stimuli (except for T5 in the triangle category),
a � nding that will prove important in the later theoretical analyses. The following sections
determine the psychological space of these stimuli and then � t the categorization probability
data by using the GCM, prototype, and mixed models.

Multidimensional scaling analyses

The average similarity matrices for the no prototype and prototype conditions were used
as input to the INDSCAL scaling model (Carroll & Wish, 1974; Shepard, 1980) to derive a
six-dimensional MDS solution (see Appendix A). The INDSCAL procedure gives an MDS
con� guration that is common to both groups, together with individual dimension weights
unique to each group. The overall � t of the INDSCAL-derived distances to the observed
similarity ratings was quite good (stress 5 .069, r2 5 .954). One potential concern was that
the psychological space might vary depending on whether prototypes had been viewed
during training. Because the INDSCAL solution is constrained to be structurally identical
for both groups (subject only to dimensional stretching or shrinking), it is necessary to
verify that the MDS solution is reasonable for both groups. First, the � ts of the INDSCAL
solution to each individual group were also quite good: No prototype stress 5 .069, r2 5 .954;
prototype stress 5 .068, r2 5 .954. Second, as indicated in Appendix A, the INDSCAL
weights, re� ecting the importance of each dimension, were comparable across both groups.
Therefore, presence or absence of prototypes during training did not seem to appreciably
change the locations of the dot patterns in the psychological space.

Figure 5 plots the � rst three dimensions of the MDS solution; dimensions 1–3 account
for 80% of the variance in the similarity ratings (percentage of variance accounted for by a
dimension equals the square of the INDSCAL dimension weight). Compare the left panel
of Figure 5 with the right panel of Figure 1—the scaling solution is consistent with the idea

Figure 4. The left panel displays observed and the right panel displays predicted categorization accuracy,
collapsed across individual stimuli, for prototypes, old items, and new items in Experiment 1. The no prototype
condition is indicated by open triangles, and the prototype condition is indicated by � lled circles.
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that the prototypes were psychological extremes in relation to other exemplars of their cate-
gories, not central tendencies. Although these patterns are indeed quite close to being phys-
ical central tendencies of the old instances (as determined by physically averaging the
distortions), they are not psychological central tendencies. That said, we do believe that the
location of objects in psychological space may be highly dependent on the context in which
similarity ratings are made (e.g., Medin, Goldstone, & Gentner, 1993). We observed extreme
point representations for prototypes in the context of contrast categories. It seems quite
possible that if similarity ratings were collected for patterns from just a single category we
could observe central tendency representations for prototypes instead.

To obtain converging evidence that the prototypes are well characterized as extreme
points in the psychological space, we conducted the following analysis. First, we calculated
the distance between each pair of stimuli in the MDS space as de� ned in the INDSCAL
model. For each individual stimulus, we then computed its average distance to all members
of the contrast categories. For example, if a stimulus was from the triangle category, we
computed its average distance to all members of the plus and F categories. We refer to this
measure as the average between-category distance (DB). Likewise, we calculated the average
distance of each stimulus to all members within its own category. We refer to this measure
as the average within-category distance (DW). Finally, we computed a composite measure,
DTOT, de� ned as the sum of DB and DW. For each category, we then rank-ordered the
stimuli according to these measures. To the extent that the prototypes occupy extreme
points in the psychological space, their values of DB, DW, and DTOT should tend to be
large. By contrast, to the extent that the prototypes are central tendencies, their values of
DW should tend to be small, and their values of DB should tend to be intermediate. In the
present case, the results were clear-cut: In all three categories, the prototypes were ranked
� rst on the between-category distance measure; that is, they had the largest values of DB.
Likewise, for the plus and F categories, the prototypes had the largest values of DW. (In the

Figure 5. The left panel displays Dimensions 1 and 2, and the right panel displays Dimensions 2 and 3 of the
six-dimensional MDS solution given in Appendix A for Experiment 1. The triangles are indicated by triangles, the
pluses are indicated by the squares, and the Fs are indicated by circles. Numbers 1–6 indicate old exemplars,
letters a–c indicate new exemplars, and P indicates the prototype of each category.
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triangle category, the prototype was ranked second on this measure.) Finally, in all three
categories, the prototypes were ranked � rst on the composite measure, DTOT. This analy-
sis con� rms the impression provided by visual inspection of Figure 4, namely, that the pro-
totypes occupied extreme points in the psychological space in which the category exemplars
were embedded.

Finally, although global measures of � t, such as stress and percentage of variance
accounted for, can be useful and informative, sole reliance on them can sometimes leave
undetected systematic problems with the underlying scaling solution. One possibility we
thought important to investigate was whether the canonical prototype patterns were nearest
neighbours of a relatively large number of category instances. As discussed by Tversky and
Hutchinson (1986), spatial models of object similarity are bounded in the number of points
any given point can be a nearest neighbour of. Using measures of centrality and reciprocity
that Tversky and Hutchinson developed, we were able to determine that the prototypes
were not nearest neighbours of a large number of points,3 thereby strengthening the idea
that the derived MDS solution provides a reasonable description to the similarity structure
underlying these dot-pattern categories.

Categorization theoretical analyses

Our next step was to � t the GCM to the observed categorization data from this experi-
ment. We begin with a brief description of the details of the model: According to the GCM,
evidence favouring a given category is found by summing the similarity of a presented object
and all category exemplars stored in memory. Objects are represented as points in a multi-
dimensional psychological space, with similarity between objects i and j being a decreasing
function of their distance in that space,

sij 5 exp(2 c ? dij) 1

(Shepard, 1987), where c is a sensitivity parameter that scales the psychological space.
Distance, dij, is computed using a simple (weighted) Euclidean metric,

dij 5 Î S wm(xim 2 xjm)2 2

where xim is the psychological value of object i on dimension m (i.e., the derived coordinates
in the MDS solution), and wm is the attention weight given to dimension m. The weights
“stretch” the psychological space along attended dimensions and “shrink” it along
unattended ones (Kruschke, 1992; Nosofsky, 1984, 1986). The probability of classifying i as
a member of category J is given by

3 Measures of centrality (C) and reciprocity (R), as de� ned by Tversky and Hutchinson (1986), were computed
for both the observed similarity matrices and the INDSCAL derived distances. For the observed data, in the no
prototype condition, C 5 1.867 and R 5 2.267, and in the prototype condition, C 5 1.733 and R 5 1.967. For the
INDSCAL derived distances, in the no prototype condition, C 5 1.733 and R 5 2.333, and in the prototype con-
dition, C 5 2.000 and R 5 2.133. Both the observed and the INDSCAL-derived centrality and reciprocity
measures were small, indicating that the prototypes were not nearest neighbours of a large number of points,
thereby strengthening our faith in the validity of the derived scaling solution. Such small values of C and R are
similar in scale to those obtained by Tversky and Hutchinson for perceptual stimuli such as colours, sounds,
odours, and simple shapes, and for more complex categories, such as birds, fruits, or weapons when superordinate
terms were not included in the set.
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whereby bJ is the category J response bias, R is the set of all categories, and g controls the
level of deterministic or probabilistic responding (Maddox & Ashby, 1993; McKinley &
Nosofsky, 1995; Nosofsky & Palmeri, 1997).

Our main theoretical goal was to determine whether a pure exemplar model, the GCM,
could account for the categorization probabilities reported in Table 1. Recall that extreme
prototype enhancement was found in the prototype condition of the experiment. As
explained earlier, the extreme point representations for prototypes, which emerged from the
similarity scaling solution, allow the GCM to qualitatively account for extreme prototype
enhancement. Another challenge is whether or not the GCM can make reasonable quanti-
tative predictions as well; the � ts of the GCM were compared with those of a pure proto-
type model and a mixed exemplar-plus-prototype model.

In � tting the GCM to the observed data, for each condition (prototype and no proto-
type), the full version of the model has eight free parameters: an overall sensitivity para-
meter (c) in Equation 1; � ve free attention weights (wm) in Equation 2 (the six attention
weights sum to one); and two free category response biases (bJ) in Equation 3 (the three
response biases sum to one); for this particular dataset, the g parameter could be set equal
to 1 without much in� uence on the � t of the GCM to the observed data. In the full version
of the model, different parameters were assumed for the prototype and no prototype condi-
tions, yielding a total of 16 parameters. Various restricted versions of the GCM were also
investigated in which parameters were constrained to be the same across both conditions.

The GCM was � tted to the categorization probabilities given in Table 1 (120 free data
points) using a maximum-likelihood measure of � t (Wickens, 1982). The predicted cate-
gorization probabilities for each individual stimulus are reported in Table 1, and maximum-
likelihood parameters and summary � ts are reported in Table 2 (GCM-16). The averaged
predicted categorization accuracies for the three main types of stimulus (prototype, old
items, and new items) are shown in the right panel of Figure 4. The GCM � tted the data
quite well, accounting for 97.1% of the variance in the observed data. Averaged across
items, the GCM captured all important qualitative trends, and showed very good quantita-
tive predictions. The GCM predicted higher categorization accuracy in the prototype con-
dition than the no prototype condition. Overall, prototypes were predicted to be categorized
more accurately than old instances, which were categorized more accurately than new
instances. Furthermore, the model predicted correctly that prototypes would be classi� ed
more accurately than old instances in the prototype condition, but that prototypes and old
instances would be classi� ed with roughly equal accuracy in the no prototype condition. In
both conditions, new instances were categorized with the lowest accuracy.

Several restricted versions of the GCM were also tested. Although all yielded signi� -
cantly worse4 � ts than the full version of the GCM, some of these restricted versions � t the

4 Likelihood-ratio tests were used to statistically compare models (see Wickens, 1982). Let lnLF and lnLR denote the
log-likelihoods for a full and restricted model, respectively. Assuming the restricted model is correct, the statistic
2 (lnLF 2 lnLR) is distributed as a c 2 with degrees of freedom equal to the number of constrained parameters. If the
observed value of c 2 exceeds a critical value, then the restricted version � ts signi� cantly worse than the full version.
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data extremely well. First, as shown in Table 2, a nine-parameter version, with attention
weights and biases constrained to be the same for both conditions, � t the data very well,
accounting for 96.7% of the variance; this result provides evidence that selective attention
and response biases probably did not differ very much between the two conditions. Second,

TABLE 2
Maximum-likelihood parameters and summary ® ts of the categorization data for
the full parameter GCM, restricted versions of the GCM, and prototype models in

Experiment 1

Parameter GCM-16 GCM-9 GCM-4 Prototype-A Prototype-B

No prototype c 1.779 1.723 1.605 0.798 2.001
w1 .276 .296 .674 .607 .228
w2 .114 .147 .412 .153 .174
w3 .334 .311 .412 .000 .322
w4 .199 .168 .315 .225 .154
w5 .064 .065 .191 .000 .067
w6 .012 .013 .156 .015 .055
bT .318 .301 .306 .393 .336
bP .312 .326 .330 .274 .314
bF .370 .373 .365 .333 .351

Fit 2 lnL 291.44 303.87 336.01 587.57 350.72
RMSE 0.044 0.046 0.052 0.085 0.056
%Var 95.5 95.0 93.8 83.4 92.7

Prototype c 2.168 2.236 2.051 1.658 1.941
w1 .320 .296 .714 .357 .360
w2 .188 .147 .474 .173 .274
w3 .260 .311 .262 .000 .000
w4 .149 .168 .281 .122 .195
w5 .070 .065 .206 .227 .092
w6 .013 .013 .170 .121 .079
bT .279 .301 .306 .306 .313
bP .344 .326 .330 .287 .328
bF .377 .373 .365 .408 .360

Fit 2 lnL 280.29 295.21 327.05 409.79 451.75
RMSE 0.040 0.043 0.048 0.063 0.066
%Var 98.0 97.7 97.1 94.9 94.6

Overall Fit 2 lnL 571.73 599.08 663.06 997.37 802.47
RMSE 0.042 0.045 0.050 0.075 0.061
%Var 97.1 96.7 95.9 90.8 93.9

Note: %Var 5 variance accounted for (in percentages). c 5 general sensitivity parameter;
wm 5 attention weight given to dimension m; bj 5 bias for making category j response;
2 lnL 5 negative value of log-likelihood; RMSE 5 root mean squared error between
observed and predicted categorization probabilities. GCM-16 5 full parameterized GCM;
GCM-9 5 GCM constrained with weights equal to INDSCAL weights and biases
common between the no prototype and prototype conditions; Prototype-A 5 prototype
model using MDS-derived “prototypes”; Prototype-B 5 prototype model using average of
old exemplars. Underlined values are constrained parameters.
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a four-parameter version, with attention weights set equal to the INDSCAL weights from
the MDS solution and biases constrained to be the same for both conditions, also � t the data
quite well, accounting for 95.9% of the variance. Although the categories were presented
with equal frequency, for some reason restricted versions with equal biases across the three
categories � tted the data signi� cantly worse than the unrestricted versions.

Prototype models, which assume that categorization decisions are based on similarity to an
abstracted prototype (e.g., Homa, 1984; Reed, 1972), were also formalized within the MDS
framework. The prototype models were identical to the GCM except that rather than com-
puting the summed similarity of an item to all category exemplars, one computes its
similarity to the category prototype instead. Two models were tested: in Prototype-A, the
derived MDS coordinates of the prototypes were used; in Prototype-B, the prototype repre-
sentations were generated by spatially averaging old category instance representations (Reed,
1972; Nosofsky, 1988; Shin & Nosofsky, 1992). As shown in Table 2, both 16-parameter
models � tted the data worse than the 4-parameter GCM. Predicted categorization accura-
cies for prototypes, old items, and new items are shown in Figure 6. Prototype-A did not
capture the qualitative trends in the data from the no prototype condition, and under-
estimated the difference in accuracy between old and new items in both conditions.
Prototype-B captured most of the qualitative relations, but systematically under- and over-
estimated the accuracies for prototypes and new items, respectively.

A combined exemplar-plus-prototype model was also investigated (Shin & Nosofsky,
1992). In this model, evidence for a given category was equal to the summed similarity of an
item to all category exemplars plus a weighted similarity to the category prototype,

[bJ(Sj e J
Sij 1 y ? SipJ)]g

P(J|i) 5 4 
S

K e R[bK( S
je K

Sij 1 y ? SipK)]g

where y is the weight for the prototype and sipJ is the similarity between item i and the proto-
type for category J. Note that y 5 0 yields the standard GCM. In � tting the combined
model to the data, separate y terms were assumed for the no prototype and prototype con-
ditions. When the prototype was given by the MDS-derived coordinates, the combined
model did not � t signi� cantly better than the standard GCM, 2 lnL 5 571.27, c 2(2) 5 0.21.
When the prototype was given by the average of the old exemplars, the combined model did
� t signi� cantly better than the standard GCM, 2 lnL 5 568.19, c 2(2) 5 7.08, with
y(no prototype) 5 3.408 and y(prototype) 5 1.034. However, note that the improvement in
� t was quite small. Moreover, if anything, we expected to � nd greater use of prototype
information in the prototype conditions; rather, the y term was greater in the no prototype
condition.

Discussion

In Experiment 1, we were able to empirically document an extreme prototype enhancement
effect in which category prototypes were classi� ed more accurately than other category
instances. This � nding contrasts with most other studies using the dot-pattern paradigm in
which the category prototypes were typically classi� ed with intermediate accuracy relative
to individual training instances of a category. The ability of exemplar-based models, such as
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the GCM, to account for extreme prototype enhancement hinges on the psychological
representation of the category prototypes, depending on whether these physical central
tendencies are represented as psychological central tendencies or as psychological extreme
points.

MDS analyses of participants’ similarity ratings revealed that the prototypes were
represented as extreme points in the psychological space relative to the category
instances. This result is informative because the typical assumption expressed in the
categorization literature is that the physical manipulation of prototypes in generating
category instances has a fairly direct mapping onto the psychological representations of
those prototypes and category instances (e.g., McLaren, Bennet, Guttman-Nahir, Kim,
& Mackintosh, 1995).

The GCM can qualitatively predict extreme prototype enhancement when prototypes
are represented as extreme points in the psychological space. We were also able to
demonstrate that the GCM could provide a good quantitative account of the observed cate-
gorization data without needing to include adjunct prototype abstraction processes as well.
Even in conditions in which the category prototypes were familiar shapes, people still
seemed to rely on exemplar information for making categorization decisions.

EXPERIMENT 2

The goal of Experiment 2 was to � nd additional evidence for extreme prototype enhance-
ment and for extreme point prototype representations using novel prototypes. To “induce”
extreme point representations for novel prototypes, we chose to constrain the category
prototypes to have bilateral vertical symmetry (see Figure 7). Symmetry, in a variety of
forms, is pervasive in the natural world (Weyl, 1952), and people are extremely sensitive to

Figure 6. The left panel displays Prototype-A and the right panel displays Prototype-B predicted categorization
accuracies, collapsed across individual stimuli, for prototypes, old items, and new items in Experiment 1. The no
prototype condition is indicated by open triangles, and the prototype condition is indicated by � lled circles.
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symmetry, especially around the vertical axis (e.g., Baylis & Driver, 1995; Bornstein &
Krinsky, 1985; Wagemans, 1993; Wagemans, Van Gool, & d’Ydewalle, 1992). Moreover,
canonical forms of objects such as leaves, crystals, or sea shells are often pictorially repre-
sented in nature � eld guides with near perfect symmetry; most people would agree that such
perfect natural forms are the prototypes of those categories.

Method

Participants

Participants were 118 undergraduates who received course credit. All participants were tested
individually.

Stimuli

Three prototype patterns of 10 dots each were created; each was constrained to be symmetric
about the vertical axis. Five points were randomly located on the left side of the pattern and � ve points
were mirrored on the right side of the pattern. One dot of a pair was � rst randomly located in the
30 3 30 grid; the second dot was located having the same vertical coordinate and the negative hori-
zontal coordinate. For example, if the � rst point had a grid location of (10,12) the second point had a
grid location of (2 10,12). A constraint was imposed that all dots be at least three units apart. Nine
moderate-level distortions (6 bits/dot) of each of these three prototypes were created; six were desig-
nated as old training patterns. Figure 7 displays the three prototype patterns along with an example
distortion.

Procedure

All procedural details were identical to those used in Experiment 1, except that � ve training blocks
were used.

Figure 7. The top part of the � gure shows the three prototype patterns for Categories A, B, and C, respectively,
used in Experiment 2. Under each prototype is an example of a moderate-level distortion created from that pattern.
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Results

Categorization data analyses

The observed categorization response probabilities for each pattern in the no prototype
and prototype conditions are shown in Table 3. A two-way repeated measures ANOVA was
conducted on the accuracy data with no prototype vs. prototype as a between-subjects
factor and type (prototype, old, or new) as a within-subjects factor. A signi� cant main effect
of type was found, F(2, 232) 5 27.12, MSE 5 0.01; planned comparisons revealed that old
patterns were categorized more accurately than prototypes, and prototypes were categorized
more accurately than new patterns. No main effect or interactions involving no prototype
vs. prototype were signi� cant. Inspection of Table 3 reveals that the effect of type depends
strongly on the category. The prototypes were classi� ed better than the old items in
Categories A and B, but were classi� ed worse than the old items in Category C; Figure 8
summarizes the observed categorization accuracy for prototypes, old items, and new items
for Categories A and B (as discussed later, the MDS solution revealed a degenerate psycho-
logical con� guration for the patterns belonging to Category C, so for illustrative purposes,
data from Category C items were not included in the � gure). The goal in the theoretical
analyses will be to attempt quantitative as well as qualitative accounts of this pattern of
results by the GCM, prototype, and mixed models.

Multidimensional scaling analyses

The average similarity matrices were used as input to the INDSCAL scaling model to
derive a six-dimensional MDS solution (see Appendix B). The overall � t of the INDSCAL-
derived distances to the observed similarity ratings was quite good (stress 5 .068,
r2 5 .949). The � ts of the INDSCAL solution to the no prototype and prototype groups,
individually, were quite good as well (no prototype stress 5 .073, r2 5 .942; prototype stress
5 .063, r2 5 .956).5

Figure 9 displays the � rst three dimensions of the MDS solution. The Category A proto-
type clearly exhibits an extreme-point representation, and the Category B prototype tends
more towards an extreme point than a central tendency representation. These impressions
are supported by calculation of the within- and between-category distance measures that we
introduced in Experiment 1. For both Categories A and B, the prototypes were ranked � rst
in terms of the composite measure DTOT, and were both highly ranked on the component
measures DB and DW. However, the Category C prototype exhibits neither an extreme
point nor a central tendency representation. (The C prototype was ranked � rst on the DW
measure, last on the DB measure, and intermediate on the DTOT measure.) Unfortunately,
by the chance nature of the prototype distortion procedure, the instances of Category C

5 Nearest neighbour analyses (Tversky & Hutchinson, 1986) were conducted on the observed similarity matrices
and the derived MDS distances. For the observed similarity matrices, in the no prototype condition, C 5 2.533 and
R 5 2.467, and in the prototype condition, C 5 2.133 and R 5 2.333. For the derived MDS distances, in the no
prototype condition, C 5 2.467 and R 5 2.700, and in the prototype condition, C 5 2.267 and R 5 2.600. As in
Experiment 1, it does not appear that the category prototypes were nearest neighbours of many category instances.
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apparently were extremely similar to one another, as indicated by the compact clustering of
points along the three dimensions shown in Figure 9. Perhaps the lack of variance in the
category instances limited people’s tendency to abstract whatever emergent dimensions
might cause the prototypes to be conceived as extreme points.

TABLE 3
Observed and predicted categorization response probabilities for the no prototype and

prototype conditions in Experiment 2

Observed Generalized context model

No prototype Prototype No prototype Prototype

Stimulus P(A) P(B) P(C) P(A) P(B) P(C) P(A) P(B) P(C) P(A) P(B) P(C)

Category A
AP .915 .045 .040 .912 .037 .051 .857 .074 .069 .881 .062 .058
A1 .921 .028 .051 .910 .025 .065 .812 .093 .095 .821 .085 .094
A2 .751 .090 .158 .771 .085 .144 .763 .135 .103 .756 .142 .102
A3 .870 .045 .085 .884 .028 .088 .841 .067 .091 .850 .061 .089
A4 .825 .051 .124 .845 .065 .090 .848 .076 .076 .857 .070 .073
A5 .819 .102 .079 .831 .071 .099 .830 .078 .092 .839 .071 .091
A6 .881 .051 .068 .890 .042 .068 .857 .069 .073 .869 .061 .070
Aa .661 .124 .215 .715 .088 .198 .721 .118 .161 .746 .100 .154
Ab .576 .158 .266 .551 .178 .271 .671 .158 .170 .669 .154 .177
Ac .509 .113 .379 .568 .076 .356 .494 .192 .314 .510 .178 .312

Category B
BP .141 .785 .073 .102 .833 .065 .156 .732 .112 .114 .808 .079
B1 .113 .746 .141 .105 .757 .138 .113 .765 .122 .106 .783 .111
B2 .062 .898 .040 .057 .893 .051 .102 .799 .099 .101 .809 .090
B3 .164 .763 .073 .130 .799 .071 .119 .783 .099 .108 .808 .085
B4 .040 .751 .209 .040 .763 .198 .105 .725 .171 .111 .733 .156
B5 .085 .701 .215 .073 .726 .201 .105 .688 .207 .111 .671 .218
B6 .130 .689 .181 .127 .706 .167 .122 .703 .174 .129 .699 .172
Ba .062 .751 .186 .071 .768 .161 .119 .724 .157 .127 .722 .152
Bb .130 .735 .136 .124 .757 .119 .167 .686 .147 .141 .741 .118
Bc .085 .729 .186 .082 .737 .181 .138 .702 .160 .138 .718 .144

Category C
CP .305 .215 .480 .274 .172 .554 .142 .222 .636 .122 .167 .712
C1 .141 .147 .712 .150 .122 .729 .088 .112 .800 .092 .095 .814
C2 .141 .107 .751 .130 .099 .771 .091 .099 .811 .099 .088 .814
C3 .096 .181 .723 .110 .147 .743 .098 .132 .770 .098 .109 .793
C4 .136 .102 .763 .138 .096 .766 .096 .121 .783 .110 .111 .779
C5 .085 .113 .802 .073 .105 .822 .090 .102 .808 .101 .098 .800
C6 .073 .141 .785 .096 .107 .797 .081 .116 .803 .087 .100 .812
Ca .073 .158 .768 .090 .153 .757 .100 .150 .750 .098 .120 .781
Cb .136 .147 .718 .170 .153 .678 .119 .152 .729 .117 .124 .759
Cc .170 .096 .735 .127 .099 .774 .142 .122 .735 .147 .107 .746

Note: AP 5 prototype of Category A; A1 5 old instance of Category A; Aa 5 new instance of Category A.
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Categorization theoretical analyses

As in Experiment 1, the full version of the GCM had sixteen parameters, eight for the
prototype and eight for the no prototype condition (� ve free attention weights, wm, two free
response biases, bJ, and one free sensitivity parameter, c, in each condition: g could be set
equal to one without much in� uencing the � t of the model). The predicted response prob-
abilities for each individual stimulus from all three categories for the full model are given in
Table 3; the best-� tting parameters and � t values are given in Table 4 (GCM–16). The
GCM � t quite well, accounting for 97.8% of the variance in the observed data in Table 3
(predictions for just Categories A and B are summarized in Figure 8). For Categories A and
B, the model predicted correctly the prototypes to be classi� ed more accurately than the old
items, and for Category C, the model predicted correctly the prototypes to be classi� ed less
accurately than the old items.

Figure 8. The upper left panel displays observed categorization accuracy, the upper right panel displays GCM
predicted categorization accuracy, the lower left panel displays Prototype-A predicted categorization accuracy, and
the lower right panel displays Prototype-B predicted categorization accuracy collapsed across individual stimuli, for
prototypes, old items, and new items in Experiment 2 (only categorization accuracy for Categories A and B are
included). The no prototype condition is indicated by open triangles, and the prototype condition is indicated by
� lled circles.



EXTREME PROTOTYPE ENHANCEMENT 217

Because no statistical difference was found between the prototype and no prototype con-
ditions, we expected that restricted versions that constrained parameters to be the same in
both conditions would also � t the data quite well. First, an eight-parameter version was
� tted to the data in which all eight parameters were constrained to be the same in both con-
ditions (GCM–8). This model did not � t the data signi� cantly worse than the full version
of the GCM, c 2(8) 5 5.86, p . .10. Second, a one-parameter version, with attention
weights set equal to the INDSCAL weights from the MDS solution, equal biases for each
category, and the same sensitivity parameter for both conditions, � tted the data quite well,
accounting for 96.9% of the variance; however, this model did � t signi� cantly worse than
the full version, c 2(15) 5 41.90, p , .001.

The two versions of the prototype model were also fitted to the observed data. Best
fitting parameters and fit values for both models are given in Table 4. Prototype-A, which
assumes the MDS coordinates of the prototypes, fitted the data quite well, accounting
for 95.5% of the variance in the observed data (predictions for just Categories A and B
are summarized in Figure 8). However, note that this 16-parameter prototype model
fitted the data worse than the 1-parameter version of the GCM. Furthermore, this
version of the prototype model is not the same version of the prototype model that fared
well in Experiment 1 (in that experiment, it was Prototype-B that provided a reasonably
good fit). Thus, considerations of parsimony favour the exemplar-based interpretation of
the data.

Prototype-B, which assumes the prototypes to be central tendencies of the old exemplars,
� tted the data quite poorly, accounting for only 81.8% of the variance (predictions for just
Categories A and B are summarized in Figure 8). This model performed most poorly in the
prototype condition, accounting for only 67.9% of the variance (note that the abstracted
prototype in the prototype condition was assumed to be an average of the old distortions and

Figure 9. The left panel displays Dimensions 1 and 2, and the right panel displays Dimensions 2 and 3 of the
six-dimensional MDS solution given in Appendix B for Experiment 2. Category A exemplars are indicated by
triangles, Category B exemplars are indicated by the squares, and Category C exemplars are indicated by circles.
Numbers 1–6 indicate old exemplars, letters a–c indicate new exemplars, and P indicates the prototype of each
category.
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TABLE 4
Maximum-likelihood parameters and summary ® ts of the categorization data for
the full parameter GCM, restricted versions of the GCM, and prototype models in

Experiment 2

Parameter GCM-16 GCM-8 GCM-1 Prototype-A Prototype-B

No prototype c 1.856 1.890 1.875 1.291 1.329
w1 .354 .344 .707 .521 .516
w2 .320 .337 .600 .479 .441
w3 .000 .000 .158 .000 .000
w4 .007 .006 .154 .000 .027
w5 .156 .171 .133 .000 .002
w6 .163 .142 .127 .000 .015
bA .315 .324 .333 .402 .345
bB .315 .317 .333 .344 .314
bC .371 .359 .333 .255 .342

Fit 2 lnL 227.94 230.36 248.89 290.56 259.09
RMSE 0.046 0.047 0.054 0.068 0.057
%Var 97.7 97.7 96.9 95.0 96.5

Prototype c 1.933 1.890 1.875 1.365 2.561
w1 .329 .344 .703 .486 .331
w2 .353 .337 .613 .514 .351
w3 .000 .000 .161 .000 .000
w4 .002 .006 .156 .000 .169
w5 .186 .171 .146 .000 .102
w6 .130 .142 .126 .000 .047
bA .333 .324 .333 .402 .245
bB .319 .317 .333 .346 .394
bC .347 .359 .333 .253 .362

Fit 2 lnL 222.46 225.00 241.92 267.90 922.24
RMSE 0.045 0.047 0.050 0.063 0.179
%Var 97.9 97.8 97.5 96.0 67.9

Overall Fit 2 lnL 450.40 455.36 490.81 558.45 1181.33
RMSE 0.046 0.047 0.052 0.066 0.133
%Var 97.8 97.7 97.2 95.5 81.8

Note: %Var 5 variance accounted for (in percentages). c 5 general sensitivity parameter;
wm 5 attention weight given to dimension m; bj 5 bias for making category j response;
2 lnL 5 negative value of log-likelihood; RMSE 5 root mean squared error between
observed and predicted categorization probabilities. GCM-16 5 full parameterized GCM;
GCM-8 5 GCM constrained with weights, biases and sensitivities common between the
no prototype and prototype conditions; GCM-1 5 GCM constrained with weights equal
to INDSCAL weights, equal category biases, and sensitivities common between the no
prototype and prototype conditions; Prototype-A 5 prototype model using MDS-derived
“prototypes”; Prototype-B 5 prototype model using average of old exemplars. Underlined
values are constrained parameters.
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the presented prototype). The combined exemplar-plus-prototype model was also investi-
gated. As in Experiment 1, additional weighted prototypes were assumed to be represented
in memory. Neither a model that assumed the MDS coordinates of the prototype,
2 lnL 5 450.39, c 2(2) 5 0.0001, nor a model that assumed the average prototype,
2 lnL 5 448.67, c 2(2) 5 2.99, � tted signi� cantly better than the full version of the GCM.

Discussion

In Experiment 2, we found that novel, vertically symmetric, dot-pattern prototypes gave rise
to an extreme prototype enhancement effect (for two of the categories tested) and that the
prototypes tended to be represented as extreme points rather than as central tendencies.
Again, although the prototypes were indeed physical central tendencies of their distortions,
they did not emerge as psychological central tendencies. Thus, the � nding that dot-pattern
prototypes may often have extreme-point representations appears to have some generality.

Although the category prototypes tended to have a “special” representational status as
relative extremes in the psychological space, they did not have a special status with regards
to making categorization decisions. Extending the theoretical results of Experiment 1, a
pure exemplar model (the GCM) provided a good account of the categorization data,
whereas simple prototype models fared less well. Furthermore, the combined exemplar-
plus-prototype models, which supplement exemplar generalization with prototype abstrac-
tion, did not provide a signi� cantly better account of the data than did the GCM.

EXPERIMENT 3

The � nal experiment in this study examined a � nding of extreme prototype enhancement
reported by McLaren et al. (1995). These researchers had participants learn two categories
of checkerboard patterns that were constructed so that the prototypes were physical central
tendencies of the category instances (see also McLaren, 1997; McLaren, Leevers, &
Mackintosh, 1994; Wills & McLaren, 1998). The prototype of Category A was a random
con� guration of white and black squares, as shown in Figure 10. The prototype of Category
B was created by randomly switching a relatively large proportion of squares of the
Category A prototype from white to black or from black to white, as shown in Figure 10.
From these category prototypes, two types of instance were generated with differing
relationships to the prototype of the other category. Close patterns were generated by
switching approximately 10% of the unique squares of one prototype to the colour of the
other prototype. This procedure created patterns that were physically more similar than was
the prototype to members of the contrast category (an example from each prototype is shown
in Figure 10). Far patterns were generated by switching approximately 10% of the squares
common to both prototypes to the opposite colour. This procedure created patterns that
were physically more dissimilar than was the prototype to members of the contrast category
(an example from each prototype is shown in Figure 10). Thus, physically, this procedure
produces patterns with roughly the following schematic arrangement:

FAR-A PROTOTYPE-A CLOSE-A CLOSE-B PROTOTYPE-B FAR-B
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McLaren et al. (1995) found the category prototypes to be the best classi� ed items, a clear
case of extreme prototype enhancement. Indeed, McLaren et al. conducted formal theo-
retical analyses involving the GCM that assumed that the distance between checkerboard
patterns was directly related to the number of mismatching squares computed on a city-
block metric. In these analyses, McLaren et al. demonstrated that the GCM failed to
account for the data and argued that the results posed a serious challenge to exemplar
models in general. Lamberts (1996) subsequently demonstrated that by making alternative
metric assumptions for calculating distances among the physically de� ned patterns,
exemplar models, such as the GCM, could account for McLaren et al.’s data.

We hypothesized, however, that an even more fundamental issue might also be involved.
In particular, the con� guration of checkerboard-pattern stimuli in psychological space may
be quite different from the physical arrangement de� ned by the number of overlapping
white and black squares. Once again, although the prototypes are central tendencies in the
physically de� ned space, they may exist as extreme points in a psychologically de� ned space.

McLaren et al. (1995) acknowledged the possibility that the individual black and white
squares might give rise to higher order emergent features in which the prototypes were no
longer central tendencies. To explore this possibility, they tested a small subset of partici-
pants in a separate identi� cation training session. In this session, participants learned a
unique label for two prototypes, two close patterns, and two far patterns; the identi� cation
confusion data were then used as input for a multidimensional scaling analysis. Although
McLaren et al. found some evidence for a psychological arrangement of the stimuli com-
parable to the physical arrangement, they reported only a one-dimensional scaling solution.
It seems much more likely that these relatively complex checkerboard patterns should give

Figure 10. Stimulus used in Experiment 3. The top part of the � gure shows the Category A prototype, a close
example, and a far example. The bottom part of the � gure shows the Category B prototype, a close example, and a
far example.
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rise to higher dimensional psychological scaling solutions. Moreover, the fact that only six
of the original patterns were examined in the McLaren et al. study potentially limits the
generalizability of their results.

Our goal was to replicate the essential features of the McLaren et al. experiments while
also conducting a comprehensive similarity rating task in which similarities among all
patterns were measured. Unlike in the McLaren et al. study, all participants in our study
learned the same set of stimuli. By using this method, the psychological scaling solution
re� ects an arrangement of the complete set of actual stimuli that were learned rather than
an approximate arrangement of a subset of a general class of stimuli. As was the case in
Experiments 1 and 2, we predicted that extreme prototype enhancement would be observed
and that the prototypes patterns would emerge in the scaling solution as extreme points
rather than central tendencies.

Method

Participants

Participants were 133 undergraduates who received course credit. All participants were tested
individually.

Stimuli

Unlike the original McLaren et al. (1995) study, all participants in this experiment learned to cate-
gorize the same set of patterns. Therefore, the stimulus generation procedure, which follows, was
performed only once before the experiment was conducted.

The stimuli were 16 3 16 checkerboard patterns of white and black squares, 4 pixels on a side (see
Figure 10 for examples). The stimuli were presented at a video resolution of 640 3 480 on 14-in com-
puter monitors. The prototype for Category A was a completely random pattern of white and black
squares. The prototype for Category B was created by randomly changing 6 squares per row from
white to black or from black to white (96 squares changed). A � xed set of 16 “close” patterns was gen-
erated from each prototype by switching a randomly selected 25 of those 96 squares not in common
with the other prototype from white to black or from black to white. This procedure produces patterns
that have greater physical overlap with the other prototype than does their prototype (although they
still have physically more overlap with their own prototype). For each category, 12 of the close
patterns were designated training patterns, and the remaining 4 were designated transfer patterns. A
� xed set of 4 “far” patterns was generated from each prototype by switching a randomly selected 25
of the 160 squares in common with the other prototype from white to black or from black to white.
This procedure produces patterns that have less physical overlap with the other prototype than does
their prototype.

Procedure

A standard category learning/transfer paradigm was used. During training, participants learned to
classify the 12 designated close patterns from each category. Each of these 24 close patterns was pre-
sented once per block for � ve training blocks. Corrective feedback was supplied for 3 s after every
response. After an intertrial interval (ITI) of 500 ms the next pattern was displayed. Participants were
urged to respond more quickly if their response times exceeded 4 s. The assignment of category to
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response key was randomized for every participant. Responses were made by pressing labelled keys on
a computer keyboard.

During transfer, all 42 patterns were tested (12 old close, 4 new close, 4 far, and the prototype from
each category). Each pattern was presented once per block for two transfer blocks. No corrective feed-
back was provided. The computer merely reported “OK” for 2 s to indicate that a response had been
recorded. After an ITI of 500 ms the next pattern was displayed.

Participants also rated the pairwise similarities among patterns. Because of the large number of
possible pairs, each participant rated only one third of them (randomly selected for each participant).
On each trial, two patterns were presented side by side. Participants rated similarities using a 10-point
scale (1 5 very dissimilar, 10 5 very similar).

Results

Categorization data analyses

Of the 133 participants, 25 were removed for failing to reach a fairly lax criterion of at
least 60% correct on the last block of training. The observed categorization probabilities for
each pattern in the transfer phase are shown in Table 5. As summarized in Figure 11, on
average, the prototypes were classi� ed the best, followed by the old close patterns, the far
patterns, and the new close patterns. A one-way repeated measures ANOVA revealed a sig-
ni� cant main effect of stimulus type, F(3, 321) 5 60.40, MSE 5 0.01. Planned comparisons
revealed that prototype classi� cation accuracy was signi� cantly the best, old close and far
pattern classi� cation accuracies were, on average, not signi� cantly different from one
another, and new close pattern classi� cation accuracy was, on average, the worst. Extreme
prototype enhancement was observed in which the prototypes were classi� ed better than
any other pattern.

Overall, these results largely replicate those of McLaren et al. (1995): The prototypes
were classi� ed better than any other patterns, even though the statistical distortion algo-
rithm produced prototypes that were roughly physical central tendencies of the category
instances. (Unlike McLaren et al., however, we did not � nd that new far patterns were
classi� ed signi� cantly better overall than old close patterns, although this result appears to
depend on the speci� c category being considered—see Figure 11.) The key question now is
to examine the psychological scaling solution for these checkerboard patterns and to use it
in conjunction with the GCM to test the exemplar-model predictions.

Multidimensional scaling analyses

The average similarity rating matrix was used as input to the KYST scaling model
(Kruskal, Young, & Seery, 1973).6 The resulting scaling solution had a stress of .090. The
� rst two dimensions of the solution, which are most informative, are shown in Figure 12,
and the complete scaling solution is reported in Appendix C. Along Dimension 1, the � rst
principal component of the KYST solution, the category prototypes have extreme values

6 Because each subject only rated 1/3 of the possible pairs of checkerboard patterns, an average similarity
rating matrix had to be used for the scaling analyses. Because only a single experimental condition was tested,
INDSCAL could not be used in the present study.
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and are not central tendencies of the old patterns. However, the prototypes had roughly
equal values along the other dimensions, and calculations of the within- and between-
category distance measures that we introduced in Experiment 1 produced intermediate
values for the prototypes. Although the prototypes for these grid patterns are not strictly
extreme points by our criteria proposed earlier, the extreme values rather than central
tendencies along Dimension 1 may allow the exemplar model to adequately predict the
extreme prototype enhancement effects and the other aspects of the categorization data.

Categorization theoretical analyses

A version of the GCM with only two free parameters was � tted to the observed data.
Parameters were a free sensitivity parameter, c, and a free response scaling term g . Unlike
INDSCAL, the orientation of the psychological dimensions is arbitrary in the KYST
model, so incorporating the dimension-weighting parameters was not possible. The
predicted categorization response accuracies for the model are shown in Table 5 and are

TABLE 5
Observed and predicted categorization response accuracy for

Experiment 3

Category A Category B

Stimulus Observed Predicted Stimulus Observed Predicted

PA 0.944 0.898 PB 0.935 0.882
CA1 0.796 0.803 CB1 0.620 0.785
CA2 0.870 0.745 CB2 0.857 0.836
CA3 0.833 0.799 CB3 0.838 0.860
CA4 0.843 0.863 CB4 0.829 0.842
CA5 0.796 0.772 CB5 0.685 0.742
CA6 0.926 0.888 CB6 0.759 0.750
CA7 0.875 0.884 CB7 0.847 0.824
CA8 0.880 0.855 CB8 0.866 0.874
CA9 0.815 0.821 CB9 0.810 0.829
CA10 0.810 0.838 CB10 0.690 0.758
CA11 0.866 0.841 CB11 0.759 0.721
CA12 0.893 0.845 CB12 0.755 0.816
Ca1 0.681 0.727 Cb1 0.722 0.760
Ca2 0.815 0.872 Cb2 0.625 0.776
Ca3 0.852 0.802 Cb3 0.745 0.795
Ca4 0.875 0.819 Cb4 0.574 0.576
FA1 0.662 0.784 FB1 0.884 0.748
FA2 0.713 0.726 FB2 0.810 0.751
FA3 0.759 0.790 FB3 0.894 0.767
FA4 0.722 0.767 FB4 0.861 0.806

Note: CA1 5 old close pattern of Category A; Ca1 5 new close pattern
of Category A; FA1 5 far pattern of Category A; PA 5 prototype of
Category A.



224 PALMERI AND NOSOFSKY

summarized in Figure 11. This two-parameter version of the GCM � t fairly well, account-
ing for 95.9% of the variance in the observed data, 2 lnL 5 228.11, RMSE 5 0.063. The
best � tting parameter values were c 5 1.336 and g 5 4.228.

Most importantly, the prototypes were predicted to be the best classi� ed items, as was
observed. Contrary to McLaren et al. (1995), when combined with the multidimensional
scaling solution derived from the similarity ratings participants made, a pure exemplar
model was able to account for the qualitative � nding of extreme prototype enhancement
effects observed in the present experiment.

Inspection of Figure 11 does reveal that the predicted prototype classi� cation prob-
abilities are somewhat smaller than observed. As in the previous experiments, we examined
a combined exemplar-plus-prototype model in which evidence for a given category was
equal to the summed similarity of an item to all category exemplars plus a weighted simi-
larity to the category prototype. The combined model did provide a signi� cantly better � t
to the observed data than did the pure exemplar model, c 2(1) 5 22.47, accounting for 96.6%
of the variance, 2 lnL 5 205.64, RMSE 5 0.058. Although this mixed model somewhat
more accurately predicted the prototype classi� cation probabilities, it did not provide
noticeably improved � ts for the other stimulus types.

Discussion

In this experiment, we replicated the extreme prototype enhancement effects observed in a
series of studies by McLaren et al. (1995).7 From these results, McLaren et al. argued that
“an exemplar theory of the type considered here is constrained to predict that far exemplars
will always be categorized at least as well as prototypes” (p. 671; but see Lamberts, 1996).

Figure 11. Observed (� lled circles) and GCM predicted (open triangles) categorization accuracy, collapsed
across individual stimuli, for prototypes, close (old), close (new), and far patterns in Experiment 3.

7 We performed two additional replications and extensions of the McLaren et al. (1995) study using different
stimulus sets. These studies provided additional converging evidence for the results reported here. In both studies,
extreme prototype enhancement was observed, and the prototypes were psychological extreme points. Moreover,
in one of the two studies, the far stimuli were categorized signi� cantly more accurately than the close stimuli, repli-
cating the original McLaren et al. results.
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McLaren et al.’s claim, however, assumes that the psychological space for the stimuli has a
direct correspondence with the physical one. In particular, they assume that in addition to
being physically de� ned central tendencies, the prototypes are psychological central
tendencies as well. By contrast, our MDS analyses revealed that the prototypes gave rise to
extreme values along one of the emergent psychological dimensions. Furthermore, when a
particular exemplar model, the GCM, was used in combination with this derived MDS
solution, it provided a reasonably good account of the extreme prototype enhancement that
was observed (but see McLaren, 1997, and Wills & McLaren, 1998, for other experimental
situations involving these checkerboard stimuli that may involve prototype abstraction
following categorization or preexposure).

An assumption made by McLaren et al. (1995) was that each 16 3 16 checkerboard
pattern was represented within a 256 dimensional space. In this space, each psychological
dimension corresponds directly to the primitive feature of some given square being white or
black. We contend that this assumption is probably unjusti� ed, as our MDS analyses reveal.
Inspecting the patterns in Figure 10, it seems entirely reasonable to suppose that partici-
pants might extract higher level con� gurations of black and white squares. Clearly, no
simple feature-based account could capture properties such as the degree of symmetry in a
pattern or the “clumpiness” of a pattern. Also, depending on whether white is foreground
or background, different kinds of con� gurations can emerge. For example, informal dis-
cussions with a subset of participants revealed that some noticed con� gurations such as the
white “staircase” in the upper left corner of the Category A prototype or the black “island”
in the upper right hand corner of the Category A prototype. The extreme value of the
prototypes along Dimension 1 may in part re� ect a fairly sophisticated feature creation
process, which a simple elemental approach to understanding psychological dimensions
overlooks (see Schyns, Goldstone, & Thibaut, 1998).

Figure 12. Dimensions 1 and 2 of MDS solutions for Experiment 3. Category A patterns are indicated by circles,
and Category B patterns are indicated by squares. White symbols indicate old close patterns, grey symbols indicate
new close patterns, black symbols indicate far patterns, and P’s indicate prototypes.
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GENERAL DISCUSSION

The present article was initially motivated by a set of results from the classic dot-pattern
categorization paradigm (Homa, 1984; Posner & Keele, 1968, 1970). In such experiments,
prototypes are often classi� ed as well as and often times better than old training patterns.
Although these results were originally taken as solid evidence for the existence of a proto-
type abstraction process, these effects have since been shown to be entirely consistent with
exemplar models of categorization (e.g., Busemeyer et al., 1984; Hintzman, 1986; Hintzman
& Ludlam, 1980; Nosofsky, 1988; Shin & Nosofsky, 1992). Although prototype enhance-
ment effects are regularly observed in such studies, they are typically not very large, and,
almost always, at least some of the individual old exemplars are classi� ed better than the
prototypes. Whereas innumerable dot-pattern studies have reported prototype enhance-
ment effects in which the prototypes are classi� ed as well as or better than the average of the
old distortions, few have reported extreme prototype enhancement effects in which the
prototypes are classi� ed better than all instances of a category.8 As described earlier, � nding
extreme prototype enhancement for prototypes that are psychological central tendencies of
old distortions may prove extremely dif� cult, if not impossible, for an exemplar model, such
as the GCM, to account for—such a � nding could potentially falsify the GCM.

Therefore, our goal in developing these studies was to attempt to empirically create
extreme prototype enhancement effects that might prove exceptionally challenging to
exemplar models. In Experiment 1, we did so by using dot-pattern prototypes that were
simpli� ed representations of highly familiar objects. This method is precisely the one that
Posner and Keele used in their very � rst studies. It seemed reasonable to hypothesize that if
extreme prototype enhancement were ever to be found in a dot-pattern paradigm, it would be
found using such prototypes. In Experiment 2, we used symmetric dot-pattern prototypes.
Again, it seemed reasonable that such prototype patterns might exhibit a special status
vis-à-vis their distortions, which would cause them to be classi� ed more accurately. Finally, in
Experiment 3, we borrowed an experimental paradigm recently reported by McLaren et al.
(1995), using checkerboard patterns of white and black squares, that was also shown to give
rise to very high classi� cation accuracy for the category prototypes. In Experiments 1 and 3,
we found evidence for extreme prototype enhancement—category prototypes were classi� ed
better than any of the old category examples on which participants were trained. Tendencies
for extreme prototype enhancement were also observed in Experiment 2.

Recall, these results pose a serious challenge to exemplar models only if the prototypes,
which are physical central tendencies of category instances, are psychological central
tendencies as well. For the dot-pattern stimuli used in Experiments 1 and 2, and for the
checkerboard patterns used in Experiment 3, the categories were constructed in such a way
that the prototypes were physical central tendencies of the category instances. That is, a
composite image made by averaging together all of the category instances looks almost iden-
tical to the category prototype. The fact that the prototypes are physical central tendencies

8 Unfortunately, only quite recently have studies reported classi� cation probabilities for all of the individual
stimuli used in dot-pattern experiments. Typically, only average classi� cation accuracies for various types of
stimulus (prototype, old distortion, new distortion) were reported, making it impossible to assess whether extreme
prototype enhancement was observed.
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does not necessarily imply that they are psychological central tendencies as well. For
stimuli with clearly de� ned psychological dimensions, such as semicircles of varying sizes
containing radial lines of varying angles (e.g., Nosofsky, 1986; Shepard, 1964), tones vary-
ing in loudness and pitch (Melara & Marks, 1990), or perhaps even schematic faces varying
the location of facial features (e.g., Nosofsky, 1991), a fairly direct mapping between
physical and psychological dimensions may exist. However, the mappings between physical
properties and psychological dimensions of fairly complex stimuli, such as arti� cial dot-
patterns or checkerboard patterns and perhaps more natural stimuli, are not so clearly
de� ned (Hock et al., 1988; Shin & Nosofsky, 1992).

To determine the location of the category prototypes relative to the other category
instances, participants provided similarity ratings between pairs of stimuli. These ratings
were then subjected to a multidimensional scaling analysis to recover the underlying psycho-
logical space of the stimuli used in each experiment. Across all three experiments, the
scaling analyses revealed the category prototypes to be relative extremes in the psychological
space rather than central tendencies. Across all three experiments, when coupled with this
obtained psychological scaling solution, one particular exemplar model, the GCM, could
both qualitatively and quantitatively account for the observed extreme prototype enhance-
ment effects, as well as other aspects of the observed data. By contrast, various types of
prototype model either failed to account for the observed data, or the best-� tting version of
the prototype model was not of the same type in different experiments. In addition, little or
no evidence was found that pointed to the need to supplement an exemplar model with an
additional prototype abstraction process.

It should be stressed that the MDS solutions incorporated in the GCM modelling were
derived from similarity judgements following category learning. Although research on this
issue is needed, we think it is likely that the modelling approach would be considerably less
successful if the similarity judgements were obtained in a completely independent context.
The present types of complex dot-pattern can probably be coded and represented in a variety
of highly � exible ways. Combined with the fact that similarity judgements are themselves
highly context dependent (Medin et al., 1993; Tversky, 1977), this � exibility of coding
suggests a need to derive the MDS representation in the context of the category-learning
situation. The most challenging future goal is to understand how the psychological repre-
sentations are formed—how and why did the prototypes come to be represented psycho-
logically as extreme points? Much of the work in categorization has assumed
representations to remain relatively unchanged with experience, apart from changes in how
dimensions are selectively attended (Kruschke, 1992; Nosofsky, 1986). Recent work, how-
ever, has begun to suggest that an important component of categorization involves a more
complex form of perceptual learning—not only must a person learn what features are diag-
nostic, they must also create new diagnostic features (e.g., Lesgold et al., 1988; Schyns et al.,
1998; Schyns & Murphy, 1991; Schyns & Rodet, 1997). Rather than assume that the
perceptual system provides a set of � xed features to be used as inputs to higher level cate-
gorization processes, Schyns et al. (1998) have suggested that � exible, functional features
may be created as part of the process of category learning. A reasonable hypothesis is that
the extreme-point prototype representations in the present studies arose from the
emergence of these diagnostic, functional features in the context of learning these particu-
lar dot-pattern categories. One possible starting point for incorporating perceptual learning
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mechanisms into theories of categorization might be an associative model proposed by
McLaren and colleagues (McLaren, Kaye, & Mackintosh, 1989; McLaren, 1997).

Given the nature of the dot-pattern stimuli and the � exibility of coding that arises, it
seemed necessary to collect the similarity judgement data only following the completion of
category learning. A potential concern that arises is that the prototypes emerged as extreme
points in the similarity representations because they were judged as the best examples of
their categories. According to this view, the prototypes are indeed central tendencies in the
“true” psychological space in which the patterns are embedded. Because observers may
allow judged category goodness to in� uence their similarity ratings, however, the MDS
analyses of the similarity data revealed a distorted psychological space. To the extent that
functional features are indeed created by the act of categorizing, as hypothesized by Schyns
and his colleagues (Schyns et al., 1998; Schyns & Rodet, 1997), these alternatives become
extraordinarily dif� cult to disentangle. Nevertheless, we can point to some indirect evidence
that poses problems for the prototype-as-central-tendency view. First, consider category-
learning situations in which stimuli vary along a few salient psychological dimensions and
where creation of new functional features tends not to take place. Examples include learn-
ing to classify colours varying in their brightness and saturation, or simple geometric forms
varying in their size and angle of orientation. If the view is that the central tendency of the
distribution is privileged, and similarity judgements among patterns simply follow judged
category goodness, then when using such stimuli, the central tendency should be the best
classi� ed item and an MDS analysis based on similarity data should place it at the extremes
of the category distribution. A vast literature, however, indicates that such is not the case.
Instead, when stimuli with these types of clear-cut psychological dimension are used, the
central tendency tends not to be among the most accurately or rapidly classi� ed objects, and
scaling solutions based on similarity judgement data place it in the centre of the category
distribution. Thus, although we cannot rule out the possibility that in the present experi-
ments the prototype was a “true” psychological central tendency and that the similarity
judgements led to a distorted representation, this view appears to be severely limited in its
generality.

The bottom line is that we have provided evidence in favour of one particular theoretical
approach to understanding extreme prototype enhancement effects that are observed for
stimuli composed of highly � exible and complex psychological dimensions. In this
approach, the prototypes are to be interpreted as extreme points in the psychological simi-
larity space that emerges from categorization experience. The MDS-based exemplar model
has been highly successful at accounting for details of classi� cation performance in numer-
ous domains involving stimuli varying along clear-cut and salient psychological dimensions.
The present research demonstrates generality for the approach by using the same types of
similarity scaling method as in this previous work, but where the nature of the psychological
dimensions that compose the objects is far more � exible and complex. It is an open question
whether or not alternative models can be developed that match the generality and precision
of this MDS-based exemplar-modelling approach.
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APPENDIX A
Six-dimensional scaling solution for the dot patterns in Experiment 1

Dimension

Stimulus 1 2 3 4 5 6

Triangle
TP 2.106 2 0.190 2 1.490 1.566 0.151 2 0.234
T1 1.602 2 0.009 0.174 0.861 2 0.110 2 0.265
T2 1.687 2 0.323 2 0.219 0.681 0.051 2 1.020
T3 0.003 2 0.044 0.717 0.978 2 0.123 2 2.586
T4 1.428 0.342 2 0.076 0.454 0.496 0.092
T5 1.850 2 0.097 2 0.401 1.079 0.247 2 0.372
T6 0.964 2 0.076 0.316 0.773 2 0.978 2 0.248
Ta 1.233 0.392 0.016 2 0.004 0.278 2 0.800
Tb 1.095 2 0.359 0.067 2 0.235 2 1.552 2 1.751
Tc 1.054 0.586 2 0.035 2 0.122 0.881 0.402

Pluses
PP 2 1.082 1.921 2 3.199 2 0.873 0.432 0.535
P1 2 0.528 1.223 0.041 0.826 2 0.745 1.308
P2 2 0.614 0.648 0.726 2 0.749 0.815 1.640
P3 2 0.532 0.643 0.061 2 0.129 1.941 2 0.847
P4 2 0.733 1.258 2 0.101 2 1.298 2 0.676 0.363
P5 2 1.107 0.330 0.437 0.737 1.919 2 0.260
P6 2 0.791 1.076 2 0.436 2 1.547 0.465 0.036
Pa 2 0.702 0.782 0.653 0.701 2 1.584 0.385
Pb 2 0.713 0.552 0.441 0.036 2 0.299 2 2.039
Pc 2 0.447 0.991 0.231 2 1.754 1.148 2 0.468

Fs
FP 2 1.200 2 2.527 2 2.646 2 0.442 2 0.022 0.980
F1 2 0.784 2 0.110 0.759 1.713 1.706 2 0.341
F2 2 0.457 2 0.620 1.490 2 1.659 1.459 1.360
F3 2 0.499 2 1.835 2 0.044 0.010 2 1.127 2 0.400
F4 2 0.292 2 0.099 1.129 0.417 2 1.428 1.111
F5 2 0.724 2 0.330 0.959 0.744 2 1.513 0.201
F6 2 0.756 2 2.285 2 0.857 2 0.561 2 0.848 0.351
Fa 2 0.151 2 1.489 2 0.652 0.736 2 0.507 0.890
Fb 2 0.687 2 0.708 1.130 2 0.646 2 0.595 1.584
Fc 2 0.222 0.357 0.811 2 2.293 0.119 0.395

Note: INDSCAL weights for the no prototype group are .674, .412, .412, .315, .191, and .156,
and for the prototype group are .714, .474, .262, .281, .206, and .170. TP 5 prototype of triangle
category; T1 5 old instances of triangle category; Ta 5 new instance of triangle category.
Category T 5 triangles; Category P 5 pluses; Category F 5 Fs.
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APPENDIX B
Six-dimensional scaling solution for the dot patterns in Experiment 2

Dimension

Stimulus 1 2 3 4 5 6

Category A
AP 1.834 2 0.070 2 0.913 0.702 0.051 0.101
A1 1.374 0.064 2 3.266 2 0.726 1.154 2 0.162
A2 1.240 2 0.257 0.738 2 0.012 2 1.406 0.735
A3 1.578 0.354 2 0.434 2 0.090 0.943 0.304
A4 1.628 0.062 0.870 0.095 2 0.396 0.086
A5 1.391 0.227 1.597 0.613 0.166 2 0.200
A6 1.611 0.125 0.385 2 0.332 0.283 2 0.211
Aa 1.363 0.441 2 0.672 2 0.462 0.066 2 1.461
Ab 0.941 0.151 2.445 2 0.381 2 1.078 0.279
Ac 0.846 0.605 0.883 0.068 2 1.681 2 1.958

Category B
BP 2 0.333 2 1.627 2 0.767 1.078 2 1.144 0.211
B1 2 0.628 2 1.226 2 1.058 2 1.136 2 1.889 2 0.647
B2 2 0.567 2 1.661 2 0.165 0.428 0.336 2 0.730
B3 2 0.434 2 1.630 2 0.373 0.280 2 0.332 0.498
B4 2 0.668 2 0.636 1.010 2 0.202 2.943 2 1.491
B5 2 0.869 2 0.672 2 0.329 2 2.380 2 0.062 2 0.154
B6 2 0.624 2 0.917 0.752 2 1.497 0.528 0.412
Ba 2 0.752 2 1.319 0.704 2 1.357 1.090 2 0.707
Bb 2 0.467 2 1.455 2 0.284 0.244 2 1.197 1.103
Bc 2 0.590 2 1.403 0.094 1.358 0.894 0.689

Category C
CP 2 0.742 0.634 2 0.498 2.547 2 0.317 0.072
C1 2 0.863 1.213 2 0.577 1.118 0.429 2 0.133
C2 2 0.746 1.191 0.085 0.356 1.041 1.369
C3 2 0.866 1.150 2 0.171 2 0.321 2 0.801 2 0.114
C4 2 0.675 1.098 2 0.452 1.098 2 0.127 2 2.612
C5 2 0.763 1.015 2 0.751 2 1.437 0.171 2.397
C6 2 0.957 1.166 2 0.225 0.153 1.264 0.084
Ca 2 0.971 1.101 0.237 2 1.208 2 0.445 0.427
Cb 2 0.733 0.982 1.205 0.767 2 0.006 0.189
Cc 2 0.559 1.292 2 0.068 0.634 2 0.476 1.625

Note: INDSCAL weights for the no prototype group are .707, .600, .158, .154, .133, and .127,
and for the prototype group are .703, .613, .161, .156, .146, and .126. TP 5 prototype of Category
A; A1 5 old instances of Category A; Aa 5 new instance of Category A.
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APPENDIX C
Six-dimensional scaling solution for the checkerboard patterns in Experiment 3

Dimension

Stimulus 1 2 3 4 5 6

Category A
C1 0.429 2 0.023 0.214 2 0.490 2 0.175 0.307
C2 0.462 2 0.015 2 0.440 0.597 2 0.082 0.323
C3 0.489 0.028 0.481 2 0.051 0.755 0.133
C4 0.602 0.089 0.335 2 0.160 0.173 0.288
C5 0.520 2 0.236 2 0.122 2 0.471 0.359 0.171
C6 0.836 0.107 0.050 0.267 0.144 2 0.035
C7 0.802 0.225 2 0.122 0.057 2 0.146 0.323
C8 0.624 0.377 0.361 0.004 0.164 2 0.315
C9 0.471 0.477 0.179 0.088 2 0.668 0.098
C10 0.515 0.068 0.353 2 0.298 2 0.199 2 0.259
C11 0.526 2 0.046 0.168 0.235 2 0.412 0.350
C12 0.705 0.529 2 0.128 0.176 2 0.256 2 0.350
C13 0.388 0.468 2 0.140 2 0.440 2 0.334 0.520
C14 0.839 0.519 0.137 0.447 0.045 0.150
C15 0.682 0.127 2 0.236 2 0.505 0.017 2 0.215
C16 0.719 0.050 2 0.186 0.016 0.250 2 0.335
F1 0.677 2 0.447 0.078 0.529 0.008 2 0.562
F2 0.847 2 0.864 2 0.899 2 0.060 2 0.121 0.141
F3 0.611 2 0.758 0.471 2 0.003 0.028 2 0.220
F4 0.662 2 0.794 2 0.085 0.254 0.211 0.046
P 0.924 2 0.114 0.166 0.041 2 0.079 2 0.086

Category B
C1 2 0.453 2 0.203 2 0.444 0.530 0.031 2 0.196
C2 2 0.636 0.262 2 0.020 0.165 0.608 2 0.022
C3 2 0.576 0.187 2 0.540 0.170 0.422 0.108
C4 2 0.715 0.167 2 0.385 2 0.028 2 0.450 0.062
C5 2 0.433 2 0.534 0.126 2 0.594 0.358 0.088
C6 2 0.487 2 0.368 0.070 2 0.542 2 0.213 0.073
C7 2 0.688 0.446 0.099 0.363 0.128 0.243
C8 2 0.809 2 0.367 2 0.298 2 0.388 0.293 0.078
C9 2 0.522 0.619 2 0.379 0.273 0.375 2 0.177
C10 2 0.327 0.515 2 0.475 2 0.303 0.156 2 0.426
C11 2 0.511 0.563 0.204 0.059 2 0.459 0.138
C12 2 0.583 0.034 2 0.268 2 0.086 2 0.039 0.484
C13 2 0.610 2 0.070 2 0.106 2 0.269 2 0.360 2 0.631
C14 2 0.535 2 0.361 2 0.519 2 0.087 2 0.393 2 0.322
C15 2 0.616 0.520 0.063 2 0.217 0.332 0.143
C16 2 0.308 0.246 0.517 2 0.597 0.156 2 0.335
F1 2 0.987 2 0.320 0.843 0.261 2 0.325 0.043
F2 2 0.769 2 0.590 0.345 0.457 0.291 0.564
F3 2 0.836 2 0.415 0.199 0.114 2 0.725 2 0.058
F4 2 0.925 2 0.075 0.391 0.481 0.177 2 0.459
P 2 1.006 2 0.024 2 0.054 0.008 2 0.048 0.127

Note: C1–C12 5 old close patterns; C13–C16 5 new close patterns; F1–F4 far patterns;
P 5 prototype.




