THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2001, 544 (1), 197-235

Central tendencies, extreme points, and prototype
enhancement effects in ill-defined perceptual
categorization
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In three perceptual classification experiments involving ill-defined category structures, extreme
prototype enhancement effects were observed in which prototypes were classified more
accurately than other category instances. Such empirical findings can prove theoretically
challenging to exemplar-based models of categorization if prototypes are psychological central
tendencies of category instances. We found instead that category prototypes were sometimes
better characterized as psychological extreme points relative to contrast categories. Extending a
classic and widely cited study (Posner & Keele, 1968), participants learned categories created
from distortions of dot patterns arranged in familiar shapes. Participants then made pairwise
similarity judgements of the patterns. Multidimensional scaling (MDS) analyses of the similar-
ity data revealed the prototypes to be psychological extreme points, not central tendencies.
Evidence for extreme point representations was also found for novel prototype patterns dis-
playing a symmetry structure and for prototypes of grid patterns used in recent studies by
McLaren and colleagues (McLaren, Bennet, Guttman-Nahir, Kim, & Mackintosh, 1995).
When used in combination with the derived M DS solutions, an exemplar-based model of cate-
gorization, the Generalized Context Model (Nosofsky, 1986), provided good fits to the observed
categorization data in all three experiments.

One of the major research paradigms used for investigating perceptual categorization has
been the dot-pattern prototype-distortion task introduced by Posner and Keele (1968,
1970). In this task, prototype dot patterns are created, and participants are trained to
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categorize statistical distortions of these prototypes. During transfer, old distortions, new
distortions, and the prototypes are presented to be classified without feedback. As discussed,
for example, by Homa (1984), a major advantage of these experiments is that the dot
patterns are essentially infinitely variable and have a highly complex dimensional structure,
so that the properties of the artificial categories that are created may mimic those of many
natural categories.

The dot-pattern paradigm has been used to systematically investigate the effects of
numerous fundamental variables on category learning and transfer, including effects of cate-
gory size (e.g., Breen & Schvaneveldt, 1986; Homa & Vosburgh, 1976; Posner & Keele, 1968;
Shin & Nosofsky, 1992), category variability (e.g., Barresi, Robbins, & Shain, 1975; Homa,
1978; Homa & Vosburgh, 1976; Posner & Keele, 1968), instance frequency (e.g., Homa,
Dunbar, & Nohre, 1991; Shin & Nosofsky, 1992), number of categories learned (e.g.,
Homa & Chambliss, 1975), amount of training (e.g., Homa et al., 1991; Homa, Goldhardt,
Burruel-Homa, & Smith, 1993), and delay between training and transfer (e.g., Homa, Cross,
Cornell, Goldman, & Schwartz, 1973; Posner & Keele, 1970; Strange, Kenney, Kessel, &
Jenkins, 1970). In addition, the paradigm has been used to investigate the relationship
between categorization and old—new recognition memory (e.g., Homa et al., 1993; Metcalfe
& Fisher, 1986; Onohundro, 1981; Shin & Nosofsky, 1992; Vandierendonck, 1984) and has
also served as a fundamental testing ground for investigating neuropsychological aspects of
categorization (e.g., Knowlton & Squire, 1993; Kolodny, 1994; Nosofsky & Zaki, 1998;
Palmeri & Flanery, 1999; Reber & Squire, 1997; Reber, Stark, & Squire, 1998; Squire &
Knowlton, 1995). Indeed, the dot-pattern paradigm has provided bedrock data for evaluat-
ing numerous theories of categorization and memory including prototype models (e.g.,
Busemeyer, Dewey, & Medin, 1984; Homa, Sterling, & Trepel, 1981), distributed memory
models (e.g., Knapp & Anderson, 1984; Metcalfe, 1982), connectionist models (e.g.,
McClelland & Rumelhart, 1985), and exemplar models (Hintzman, 1986; Nosofsky, 1988;
Shin & Nosofsky, 1992).

One of the most salient aspects of dot-pattern studies is a well-known effect called proto-
type enhancement. On average, category prototypes that are not experienced during training
are typically classified during transfer as well as, and sometimes somewhat better than, the
old category instances, and better than new category instances. Although such prototype
enhancement effects were originally believed to provide solid evidence for the existence of
prototype abstraction processes, theoretical work has shown that pure exemplar retrieval
models can account for this phenomenon as well (e.g., Busemeyer et al., 1984; Hintzman,
1986; Hintzman & Ludlam, 1980; Nosofsky, 1988, 1992; Shin & Nosofsky, 1992). It may
seem paradoxical that models that assume that categories are represented solely in terms of
stored exemplars can account for enhanced classification of unseen prototypes. The key
intuition is that, although any given old exemplar is highly similar to itself, it may not be
very similar to any other old exemplars. By contrast, prototypesare typically similar to many
other exemplars stored in memory. The similarity of prototypes to numerous stored exem-
plars makes up for the lack of stored representations for the prototypes themselves.

Shin and Nosofsky (1992) demonstrated an approach to modelling detailed aspects of
dot-pattern classification performance that combined an exemplar-based model of cate-
gorization, the Generalized Context Model (GCM; Nosofsky, 1986), with multidimensional
scaling (MDS) techniques (Shepard, 1980). The stimuli they used were typical of most
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random-dot-pattern studies. Random prototypes were generated for each category, and
statistical distortions of these prototypes were created as category instances (Posner,
Goldsmith, & Welton, 1967). Some of these distortions were designated as training patterns
and some were designated as transfer patterns. In their studies, all participants learned to
classify the same set of patterns. Over numerous trials, participants learned to classify the
training patterns with corrective feedback. During transfer, they classified the training
patterns, transfer patterns, and category prototypes without feedback. Across three experi-
ments, Shin and Nosofsky examined effects of several fundamental learning variables on
categorization, including level of distortion of patterns, category size, delay of the transfer
phase, and individual item frequency. Their primary goal was to assess whether a pure
exemplar-based model could account for the observed classification results of whether
prototype abstraction processes needed to be assumed as well.

Several previous attempts to model dot-pattern classification have used randomly gener-
ated multi-element stimulus vectors as inputs to simulation models (e.g., Hintzman, 1986;
Knapp & Anderson, 1984; Metcalfe, 1982; Nosofsky, 1988). Although such representations
are intended to capture some elements of the physical instantiation of the dot-pattern stimuli,
they may fail to capture the true psychological relationships among these complex patterns.
Moreover, these methods allow only gross-level predictions to be made, such as predictions
of average classification performance for the prototypes and old and new distortions.
Instead, as a more detailed test of various competing models, Shin and Nosofsky (1992)
aimed to account for the classification performance of particular instances, not just average
classification of particular types of stimuli. In their experiments, participants provided pair-
wise similarity ratings of the dot patterns. These similarity rating data were then analysed
using standard MDS techniques to obtain a psychological scaling solution for the stimuli.
The derived scaling solution was used in conjunction with the GCM, a prototype model,
and a mixed model to account for the observed classification data. Theoretical analyses
revealed little evidence for the existence of a prototype abstraction process that operated
above and beyond pure exemplar-based generalization. Among other qualitative and quan-
titative predictions, the pure exemplar-based model could account for the prototype
enhancement effects that Shin and Nosofsky observed.

It is important to note that many reported cases of prototype enhancement in experi-
ments using the dot-pattern paradigm have compared classification accuracy for category
prototypes relative to the average classification accuracy for other category instances; in
those articles that report classification probabilities for individual stimuli, the prototype is
not the best classified item overall. For example, the degree of prototype enhancement
reported by Shin and Nosofsky (1992) was not very large, and many old category instances
were classified more accurately than the category prototypes. A potential challenge for the
GCM and other exemplar models is whether or not they could ever predict an extreme proto-
type enhancement effect in this paradigm, in which the prototypes are classified significantly
more accurately than other category instances.

An observation of extreme prototype enhancement could provide a serious challenge to
the GCM and other exemplar models. According to many theories of perceptual cate-
gorization, including the GCM, objects are represented as points in a multidimensional
psychological space (e.g., Ashby, 1992; Homa, 1984; Nosofsky, 1986; Reed, 1972; Shepard &
Chang, 1963). It is natural to assume that category prototypes in dot-pattern studies, as well
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as other experimental paradigms, are psychological as well as physical central tendencies of
category instances (Homa, 1984; Homa et al., 1981; Nosofsky, 1987; Posner, 1969; Reed,
1972; Rosch, 1975b, 1978; Smith & Medin, 1981). For example, in summarizing the results
of Posner and Keele’s (1968, 1970) studies, Anderson (1980, p. 140, 142) wrote: “One of the
most impressive demonstrations of subjects’ ability to extract the central tendency of a set
of instances is a series of experiments performed by Posner and Keele (1968, 1970). . . . The
prototype for Posner’s dot patterns would have been the average of the studied dot patterns.”
This assumption about a central-tendency representation for the prototypes has been
largely confirmed in multidimensional scaling studies involving randomly generated proto-
types (Homa, 1984; Homa, Rhoads, & Chambliss, 1979; Shin & Nosofsky, 1992).
Simplifying the multidimensional representation of the patterns somewhat, the left panel of
Figure 1 depicts category prototypes (cA, cB, and cC) as psychological central tendencies of
the category instances. A key point is that if the category prototypes are indeed central
tendencies in psychological space as well as being physical central tendencies of category
instances, then the GCM cannot predict an extreme prototype enhancement effect. Instead,
category instances lying in extreme regions of the psychological space (relative to the con-
trast categories) will tend to be classified more accurately than the central prototypes, as is
illustrated later.

An alternative possibility, however, to be explored in the present research, is that proto-
types that are physical central tendencies of category instances may sometimes reside not as
psychological central tendencies, but rather as psychological extreme points relative to the
category instances. The right panel of Figure 1 depicts a situation in which physical cate-
gory central tendencies may be represented as extreme points (eA, eB, and eC) in the
psychological space relative to the category instances. Under such conditions, the GCM
does predict extreme prototype enhancement, as illustrated next.!

To illustrate how predictions of the GCM can vary depending on whether the prototypes
are central tendencies or extreme points, we generated predictions of the model based on
the idealized configuration shown in the left panel of Figure 2. We compared predicted classi-
fication accuracy for “close” exemplars, which are close to members of contrast categories,
“far” exemplars, which are far from members of contrast categories, central-tendency
prototypes, and extreme-point prototypes. The right panel of Figure 2 shows predicted
classification accuracy for each of these types of stimulus across a range of parameter values
(this theoretical analysis allowed the sensitivity parameter, ¢, which scales distances between
instances in psychological space, to vary across a range of values; we also assumed equal

I Extreme prototype enhancement has often been observed in experimental paradigms involving discrete-
dimension stimuli. However, in experimental paradigms involving discrete dimensions, such as those initially tested
by Medin and Schaffer (1978), the interpretation of a prototypeas a “central tendency” versus an “extreme point”
is unclear. Consider stimuli varying along four binary-valued dimensions. Suppose the prototypes of Categories A
and B are 1111 and 2222, respectively, and that category instances are generated by distorting these prototypes by
varying degrees (e.g., 1112 and 1121 might be examples of Category A, and 2221 and 2212 might be examples of
Category B). From one point of view, these prototypes can be viewed as “central tendencies”, in the sense that they
have the modal values on each dimension. However, these prototypes act as extreme points in the multidimensional
category structure as well. Therefore, one needs to test experimental paradigms with complex continuous-
dimension stimuli, such as dot patterns, to sharply distinguish between the roles of central tendencies and extreme
point representations in classification.
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Figure 1. A schematic illustration of central tendencies and extreme points in simplified two-dimensional
psychological space. In both panels, three categories with six distortions each are depicted by the squares, circles,
and triangles. In the left panel, the prototypes (cA, cB, and cC) are central tendencies of the six distortions of their
category. In the right panel, the prototypes (eA, eB, and eC) are extremes relative to the six distortions of
their category and relative to the distortions of the other categories.
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Figure 2. The left panel displays a schematic illustration of the psychological space used in the simulations

reported in the text. Grey symbols indicate close exemplars, black symbols indicate far exemplars, cA indicates a

central-tendency prototype, eA indicates an extreme-point prototype. The right panel displays the GCM predic-
tions for each of these four types of stimulus as a function of the sensitivity parameter of the model, ¢.

response biases for the three categories and assumed equal attention to both psychological
dimensions; see the discussion of the GCM following Experiment 1 for details of the
model). As shown in the figure, the close exemplars were predicted to be classified with
relatively low accuracy, and the far exemplars were predicted to be classified with relatively
high accuracy. The GCM could not predict prototypes to be the best classified items when
central-tendency representations were assumed—prototypes were always classified with
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intermediate accuracy. In these simulations, the failure to predict extreme prototype
enhancement with central tendency representations was observed regardless of whether the
prototypes were allowed to be old training items (a point that will be important when
reviewing the results of the first two experiments). However, the GCM could predict the
prototypes to be the best classified items when extreme-point representations were assumed.
It is clear that the derived MDS solution is crucial to ascertain whether the GCM can or
cannot predict an observed pattern of extreme prototype enhancement. Certain “objective”
measures of pattern similarity, defined by such things as the average distances between dots
in pairs of patterns (e.g., Posner, 1969), are probably insufficient—using such measures of
similarity, the prototype, being a physical central tendency of category instances, would
always emerge as a psychological central tendency as well.

The potential importance of psychological extremes in categorization has been noted in
some other work. For example, Barsalou (1985, 1991) demonstrated the importance of ideal
points in highly conceptual domains involving goal-derived categories—the best example of
the category “foods to eat on a diet” is one with zero calories, not one with the average
caloric content of typical diet foods. In applications of their highly successful Fuzzy-Logical
Model of Perception (FLLMP), Massaro and colleagues often tested paradigms in which the
stimuli varied along two clear continuous dimensions, and the prototypes to which people
compared objects were assumed to occupy extreme corners of the psychological space
(Massaro, 1987; Massaro & Friedman, 1990; Oden & Massaro, 1978)—note that in their
paradigms, the physically manipulated prototypes and their resulting psychological repre-
sentations were both extreme points. Although the potential importance of psychological
extremes in categorization has been suggested by the work of Barsalou, Massaro, and others
(e.g., Goldstone, 1993, 1996; Rosch, 1975b), the idea that a prototype that is a central tendency
in the physically defined space may emerge as an extreme point in the psychological space
has not previously been suggested. Although prototypes may indeed be physical central
tendencies of the distortions created from them, it does not necessarily follow that they are
psychological central tendencies as well. Rather, various emergent dimensions, based on
diagnostic configurations among elements of a complex physical stimulus such as a dot
pattern (e.g., Hock, Tromley, & Polmann, 1988), may be formed, which cause the prototypes
to be represented as psychological extremes within the context of learning particular
categories.

One goal of the present research was to document that extreme prototype enhancement
effects could be observed empirically. Whereas the prototypes that most recent experiments
have used were random dot patterns, in one of the original Posner and Keele (1968) studies,
highly recognizable dot patterns (e.g., a triangle, an M, and an F) were used as category
prototypes instead. We chose to use such recognizable patterns in the first experiment,
reasoning that their use as prototypes might offer an excellent chance of empirically observ-
ing an extreme prototype enhancement effect. Another goal of the present research was to
examine the nature of the psychological representations of the physical category prototypes:
Are they best characterized as psychological central tendencies or as psychological extreme
points? To assess this issue, participants provided pairwise similarity ratings among all
patterns in the set, and multidimensional scaling techniques were used to derive a psycho-
logical space for those patterns. If extreme prototype enhancement is observed and physical
prototypes are represented as psychological central tendencies, then the GCM and many



EXTREME PROTOTYPE ENHANCEMENT 203

other exemplar models would be falsified. Finally, even if the prototypes are represented as
extreme points in the MDS solution, the question still arises as to what type of decision
model will provide the best account of the detailed classification performance data. We
assessed this question by comparing the quantitative fits of formal exemplar, prototype, and
mixed exemplar-plus-prototype models.

EXPERIMENT 1

This experiment was an extension of Posner and Keele’s (1968) classic study. Following
their design, the categories were based on prototype patterns formed in the shape of a tri-
angle, a plus, and an F? Category instances were distortions of those prototype patterns.
During training, participants learned to classify these instances with feedback. To increase
the likelihood of observing an extreme prototype enhancement effect, for one group of
participants the category prototypes were also presented during training (recall from the
simulations reported earlier that the inability of the GCM to account for extreme prototype
enhancement with central tendency representations was not modulated by the presence or
absence of prototypes during training). At transfer, participants were tested on old distor-
tions, new distortions, and prototypes. Extending the Posner and Keele design, participants
also made pairwise similarity judgements; multidimensional scaling techniques were used to
analyse the similarity data to derive the psychological coordinates for the patterns (Shin &
Nosofsky, 1992). The scaling solution should reveal whether the prototypes were central
tendencies or extreme points in the psychological space. Exemplar, prototype, and exemplar-
plus-prototype models were fitted to the observed categorization data to test whether a pure
exemplar-based model needed to be supplemented by special prototype abstraction
mechanisms.

Method
Participants

Participants were 280 undergraduates who received course credit. All were tested individually.

Stimuli

Patterns were composed of nine dots placed on a 50 X 50 grid. As shown in Figure 3, the three
prototype patterns were in the shape of a triangle, a plus, and an F. These prototypes fitted within the
centre 30 X 30 of the grid. From each prototype, nine moderate-level distortions (6 bits/dot) were
created by using a standard statistical distortion algorithm (Posner et al., 1967); this algorithm moves
each dot of the prototype pattern some small amount in a random direction. Six distortions were
selected as old training items, and three were selected as new transfer items. Stimuli were presented
on 14-in computer monitors.

2 Unlike Posner and Keele (1968), we used a plus instead of an M so that the prototype would belong to
different superordinate categories.
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Figure 3. The top part of the figure shows the three prototype patterns used in Experiment 1. Under each proto-
type is an example of a moderate-level distortion created from that pattern.

Procedure

A standard category learning/transfer paradigm was used. During training, participants learned to
categorize the six training patterns from each category. In the prototype condition, participants also saw
the prototypes during training; in the no prototype condition, participants saw the prototypes only at
transfer. Patterns were presented once per block, in random order, for eight blocks. On each trial, a
pattern was presented and classified as an A, B, or C. Corrective feedback was supplied for five
seconds or until the space bar was pressed. After an I'TI of one second the next pattern was displayed.
The assignment of category to response key was randomized for every participant. Responses were
made by pressing labelled keys on a computer keyboard.

During transfer, all thirty patterns (one prototype, six old distortions, and three new distortions
from each category) were presented once per block, in random order, for three blocks. No corrective
feedback was provided.

Participants also rated the pairwise similarities among patterns. Because of the large number of
possible pairs, each participant rated only half of them (randomly selected for each participant). On
each trial, two patterns were presented side by side. Participants rated similarities by using a 10-point
scale (1 = very dissimilar, 10 = very similar).

Results
Categorization data analyses

The observed category response probabilities for each individual stimulus in the no
prototype and prototype conditions are reported in Table 1. A two-way repeated measures
analysis of variance (ANOVA) was conducted on the categorization accuracy data (the prob-
ability of classifying the item into the correct category) with no prototype vs. prototype as a
between-subjects factor and type (prototype, old, or new) as a within-subjects factor.
Accuracies for prototypes, old patterns, and new patterns in the no prototype and prototype
conditions are summarized in the left panel of Figure 4. Accuracy was higher in the proto-
type condition than the no prototype condition, F(1,276) = 94.12, MSE = 0.06 (alpha was
set at .05 for all statistical tests reported in this paper). The effect of type was significant,
F(2, 552) = 261.16, MSE = 0.02; planned comparisons revealed that prototypes were
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TABLE 1
Observed and predicted categorization response probabilities for the no prototype and
prototype conditions in Experiment 1

Observed Generalized context model

No prototype Prototype No prototype Protorype

Stimulus  P(T) P(P) P(F) P(T) P(P) P(F) P(T) P(P) P(F) P(T) P(P) P(F)

Triangles

Ty 798 088 114 926  .045 .029 745 122 134 903 .047 .049
T, 774 095 131 805  .093  .102 774 102 124 841 074  .085
T, 829 071  .100 912  .031  .057 792 095 113 .860 .064  .076
T; 429 283 288 491 264 245 A47 224 329 449 229 .323
T, 738 119 143 810  .107  .083 736 136 .128  .800  .110 .090
T; 862 071  .067 940 .048 .012 813 088 .099 .883  .057 .061
T 614 136 250  .690 .107 202 642 149 209  .691  .129 .180
T, 602 202 195 707 .155  .138 637 192 170 .699  .171 130
Ty 521 219 260 502 252 245 551 192 257 607 .163 231
T, 462 343 195 524 343 133 560 252 187 599 250 151
Pluses

Pp 260 555 186 .038  .914  .048 211 522 268  .025 934  .041
P, 217 498 286 133 .588 279 224 497 279 143 639 218
P, 138 607 255 .088 714 .198 142568 290  .091 674 235
P; 162 598 241 100 .779  .121 179 589 232 114 703 183
P, 143 610 248 074 762 164 120 670 209 .071 788 141
P; 131 600 269 .064  .652 283 51 538 312 .087  .639 274
Py 098 710  .193  .062 .810 .129 108 704 187 .062 814 124
P, 164 407 429 124 507 .369 220 338 441 161 415 424
P, 219 390 391 143 502 355 219 427 355 167 504 329
P, 138 564 298 098  .669 233 144 603 253  .099 .709 .193
Fs

Fp 243 333 424 012 .052 936 177 280 543 .025 053 922
F, 231 305 464 162 312 526 191 280 .529 125 299 .576
F, 074 181 745 .076  .183  .740 108 274 618 072 243 .685
F; 188 174 638 129 (148 724 JA85 196 618 113 124 763
F, 271 233 495 183 181  .636 213 214 573 160 201 .639
F; 174 274 552 152 243 605 189 214 597 132 194 674
Fy 105 174 721 057 .095 848 127 185 688  .063  .096 .842
F, 369 219 412 291 143 567 313 240 448 243 195 .561
F, 150 0 291 560 124 255  .621 168 331 501 127 312 .562
F, 164 381 455 148 443 410 A53 471 376 122 532 .346

Note: Tp = prototype of triangle category; T| = old instance of triangle category; T, = new instance of
triangle category. Category T = triangles; Category P = pluses; Category F = Fs.

categorized more accurately than old instances, which were categorized more accurately
than new instances. A significant two-way Prototype X Type interaction was observed,
F(2, 552) = 96.86, MSE = 0.02; in the prototype condition, prototypes were categorized
significantly more accurately than old instances; however, in the no prototype condition,
prototypes were categorized roughly as accurately as old instances. In both conditions, new
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Figure 4. The left panel displays observed and the right panel displays predicted categorization accuracy,
collapsed across individual stimuli, for prototypes, old items, and new items in Experiment 1. The no prototype
condition is indicated by open triangles, and the prototype condition is indicated by filled circles.

instances were categorized with the lowest accuracy. Note that the prototypes in the proto-
type condition were the best classified of all stimuli (except for T in the triangle category),
a finding that will prove important in the later theoretical analyses. The following sections
determine the psychological space of these stimuli and then fit the categorization probability
data by using the GCM, prototype, and mixed models.

Multidimensional scaling analyses

The average similarity matrices for the no prototype and prototype conditions were used
as input to the INDSCAL scaling model (Carroll & Wish, 1974; Shepard, 1980) to derive a
six-dimensional MDS solution (see Appendix A). The INDSCAL procedure gives an MDS
configuration that is common to both groups, together with individual dimension weights
unique to each group. The overall fit of the INDSCAL-derived distances to the observed
similarity ratings was quite good (stress = .069, 2 = .954). One potential concern was that
the psychological space might vary depending on whether prototypes had been viewed
during training. Because the INDSCAL solution is constrained to be structurally identical
for both groups (subject only to dimensional stretching or shrinking), it is necessary to
verify that the MDS solution is reasonable for both groups. First, the fits of the INDSCAL
solution to each individual group were also quite good: No prototype stress = .069, 2 = 954;
prototype stress = .068, 2 = .954. Second, as indicated in Appendix A, the INDSCAL
weights, reflecting the importance of each dimension, were comparable across both groups.
Therefore, presence or absence of prototypes during training did not seem to appreciably
change the locations of the dot patterns in the psychological space.

Figure 5 plots the first three dimensions of the MDS solution; dimensions 1-3 account
for 80% of the variance in the similarity ratings (percentage of variance accounted for by a
dimension equals the square of the INDSCAL dimension weight). Compare the left panel
of Figure 5 with the right panel of Figure 1—the scaling solution is consistent with the idea
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Figure 5. The left panel displays Dimensions 1 and 2, and the right panel displays Dimensions 2 and 3 of the
six-dimensional MDS solution given in Appendix A for Experiment 1. The triangles are indicated by triangles, the
pluses are indicated by the squares, and the Fs are indicated by circles. Numbers 1-6 indicate old exemplars,
letters a—c indicate new exemplars, and P indicates the prototype of each category.

that the prototypes were psychological extremes in relation to other exemplars of their cate-
gories, not central tendencies. Although these patterns are indeed quite close to being phys-
ical central tendencies of the old instances (as determined by physically averaging the
distortions), they are not psychological central tendencies. That said, we do believe that the
location of objects in psychological space may be highly dependent on the context in which
similarity ratings are made (e.g., Medin, Goldstone, & Gentner, 1993). We observed extreme
point representations for prototypes in the context of contrast categories. It seems quite
possible that if similarity ratings were collected for patterns from just a single category we
could observe central tendency representations for prototypes instead.

To obtain converging evidence that the prototypes are well characterized as extreme
points in the psychological space, we conducted the following analysis. First, we calculated
the distance between each pair of stimuli in the MDS space as defined in the INDSCAL
model. For each individual stimulus, we then computed its average distance to all members
of the contrast categories. For example, if a stimulus was from the triangle category, we
computed its average distance to all members of the plus and F categories. We refer to this
measure as the average between-category distance (D B). Likewise, we calculated the average
distance of each stimulus to all members within its own category. We refer to this measure
as the average within-category distance (DW). Finally, we computed a composite measure,
DTOT, defined as the sum of DB and DW. For each category, we then rank-ordered the
stimuli according to these measures. To the extent that the prototypes occupy extreme
points in the psychological space, their values of DB, DW, and DTOT should tend to be
large. By contrast, to the extent that the prototypes are central tendencies, their values of
DW should tend to be small, and their values of DB should tend to be intermediate. In the
present case, the results were clear-cut: In all three categories, the prototypes were ranked
first on the between-category distance measure; that is, they had the largest values of DB.
Likewise, for the plus and F categories, the prototypes had the largest values of DIW. (In the
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triangle category, the prototype was ranked second on this measure.) Finally, in all three
categories, the prototypes were ranked first on the composite measure, D7OT. This analy-
sis confirms the impression provided by visual inspection of Figure 4, namely, that the pro-
totypes occupied extreme points in the psychological space in which the category exemplars
were embedded.

Finally, although global measures of fit, such as stress and percentage of variance
accounted for, can be useful and informative, sole reliance on them can sometimes leave
undetected systematic problems with the underlying scaling solution. One possibility we
thought important to investigate was whether the canonical prototype patterns were nearest
neighbours of a relatively large number of category instances. As discussed by Tversky and
Hutchinson (1986), spatial models of object similarity are bounded in the number of points
any given point can be a nearest neighbour of. Using measures of centrality and reciprocity
that Tversky and Hutchinson developed, we were able to determine that the prototypes
were not nearest neighbours of a large number of points,’ thereby strengthening the idea
that the derived MDS solution provides a reasonable description to the similarity structure
underlying these dot-pattern categories.

Categorization theoretical analyses

Our next step was to fit the GCM to the observed categorization data from this experi-
ment. We begin with a brief description of the details of the model: According to the GCM,
evidence favouring a given category is found by summing the similarity of a presented object
and all category exemplars stored in memory. Objects are represented as points in a multi-
dimensional psychological space, with similarity between objects / and j being a decreasing
function of their distance in that space,

s; = exp(—c¢ - dy) 1

(Shepard, 1987), where ¢ is a sensitivity parameter that scales the psychological space.

Distance, dj;

i» s computed using a simple (weighted) Euclidean metric,

dz“ =X Wm(xim - xjm)z 2

where x;,, is the psychological value of object i on dimension m (i.e., the derived coordinates
in the MDS solution), and w,, is the attention weight given to dimension m. The weights
“stretch” the psychological space along attended dimensions and “shrink” it along
unattended ones (Kruschke, 1992; Nosofsky, 1984, 1986). The probability of classifying 7 as
a member of category ¥ is given by

3 Measures of centrality (C) and reciprocity (R), as defined by Tversky and Hutchinson (1986), were computed
for both the observed similarity matrices and the INDSCAL derived distances. For the observed data, in the no
prototype condition, C = 1.867and R = 2.267, and in the prototype condition, C = 1.733 and R = 1.967. For the
INDSCAL derived distances, in the no prototype condition, C = 1.733 and R = 2.333, and in the prototype con-
dition, C = 2.000 and R = 2.133. Both the observed and the INDSCAIL-derived centrality and reciprocity
measures were small, indicating that the prototypes were not nearest neighbours of a large number of points,
thereby strengthening our faith in the validity of the derived scaling solution. Such small values of C and R are
similar in scale to those obtained by Tversky and Hutchinson for perceptual stimuli such as colours, sounds,
odours, and simple shapes, and for more complex categories, such as birds, fruits, or weapons when superordinate
terms were not included in the set.
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whereby b5 is the category 7 response bias, R is the set of all categories, and y controls the
level of deterministic or probabilistic responding (Maddox & Ashby, 1993; McKinley &
Nosofsky, 1995; Nosofsky & Palmeri, 1997).

Our main theoretical goal was to determine whether a pure exemplar model, the GCM,
could account for the categorization probabilities reported in Table 1. Recall that extreme
prototype enhancement was found in the prototype condition of the experiment. As
explained earlier, the extreme point representations for prototypes, which emerged from the
similarity scaling solution, allow the GCM to qualitatively account for extreme prototype
enhancement. Another challenge is whether or not the GCM can make reasonable quanti-
tative predictions as well; the fits of the GCM were compared with those of a pure proto-
type model and a mixed exemplar-plus-prototype model.

In fitting the GCM to the observed data, for each condition (prototype and no proto-
type), the full version of the model has eight free parameters: an overall sensitivity para-
meter (¢) in Equation 1; five free attention weights (»,,) in Equation 2 (the six attention
weights sum to one); and two free category response biases (b7) in Equation 3 (the three
response biases sum to one); for this particular dataset, the y parameter could be set equal
to 1 without much influence on the fit of the GCM to the observed data. In the full version
of the model, different parameters were assumed for the prototype and no prototype condi-
tions, yielding a total of 16 parameters. Various restricted versions of the GCM were also
investigated in which parameters were constrained to be the same across both conditions.

The GCM was fitted to the categorization probabilities given in Table 1 (120 free data
points) using a maximum-likelihood measure of fit (Wickens, 1982). The predicted cate-
gorization probabilities for each individual stimulus are reported in Table 1, and maximum-
likelihood parameters and summary fits are reported in Table 2 (GCM-16). The averaged
predicted categorization accuracies for the three main types of stimulus (prototype, old
items, and new items) are shown in the right panel of Figure 4. The GCM fitted the data
quite well, accounting for 97.1% of the variance in the observed data. Averaged across
items, the GCM captured all important qualitative trends, and showed very good quantita-
tive predictions. The GCM predicted higher categorization accuracy in the prototype con-
dition than the no prototype condition. Overall, prototypes were predicted to be categorized
more accurately than old instances, which were categorized more accurately than new
instances. Furthermore, the model predicted correctly that prototypes would be classified
more accurately than old instances in the prototype condition, but that prototypes and old
instances would be classified with roughly equal accuracy in the no prototype condition. In
both conditions, new instances were categorized with the lowest accuracy.

Several restricted versions of the GCM were also tested. Although all yielded signifi-
cantly worse* fits than the full version of the GCM, some of these restricted versions fit the

* Likelihood-ratio tests were used to statistically compare models (see Wickens, 1982). Let InLp and InLg denote the
log-likelihoods for a full and restricted model, respectively. Assuming the restricted model is correct, the statistic
2 (InLy — InLy) is distributed as a x> with degrees of freedom equal to the number of constrained parameters. If the
observed value of %* exceeds a critical value, then the restricted version fits significantly worse than the full version.



210 PALMERI AND NOSOFSKY

TABLE 2
Maximum-likelihood parameters and summary fits of the categorization data for
the full parameter GCM, restricted versions of the GCM, and prototype models in
Experiment 1

Parameter  GCM-16  GCM-9  GCM-4  Prototype-A  Prototype-B

No prototype c 1.779 1.723 1.605 0.798 2.001
Wi 276 296 074 .607 228
W) 114 147 412 153 174
W3 334 311 412 .000 .322
Wy .199 .168 315 225 154
Ws 064 065 A91 .000 .067
W 012 013 1506 015 .055
by 318 301 .306 .393 .336
bp 312 .326 .330 274 314
bp .370 373 .365 333 351

Fit —InL 291.44 303.87 336.01 587.57 350.72
RMSE 0.044 0.046 0.052 0.085 0.056
% Var 95.5 95.0 93.8 83.4 92.7

Protorype c 2.168 2.236 2.051 1.658 1.941
Wi .320 296 J14 357 .360
W) .188 J147 474 173 274
W3 .260 311 202 .000 .000
Wy .149 1608 281 122 195
Ws .070 005 200 227 .092
W 013 013 170 121 .079
by 279 301 300 .306 313
bp 344 320 330 287 .328
by 377 373 305 408 .360

Fit —InL 280.29 295.21 327.05 409.79 451.75
RMSE 0.040 0.043 0.048 0.063 0.066
% Var 98.0 97.7 97.1 94.9 94.6

Opverall Fit —InL 571.73 599.08 663.06 997.37 802.47
RMSE 0.042 0.045 0.050 0.075 0.061
% Var 97.1 96.7 95.9 90.8 93.9

Note: % Var = variance accounted for (in percentages). ¢ = general sensitivity parameter;
w,, = attention weight given to dimension m; b; = bias for making category j response;
—InL = negative value of log-likelihood; RALSE = root mean squared error between
observed and predicted categorization probabilities. GCM-16 = full parameterized GCM;
GCM-9 = GCM constrained with weights equal to INDSCAL weights and biases
common between the no prototype and prototype conditions; Prototype-A = prototype
model using MDS-derived “prototypes”; Prototype-B = prototype model using average of
old exemplars. Underlined values are constrained parameters.

data extremely well. First, as shown in Table 2, a nine-parameter version, with attention
weights and biases constrained to be the same for both conditions, fit the data very well,
accounting for 96.7% of the variance; this result provides evidence that selective attention
and response biases probably did not differ very much between the two conditions. Second,
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a four-parameter version, with attention weights set equal to the INDSCAL weights from
the MDS solution and biases constrained to be the same for both conditions, also fit the data
quite well, accounting for 95.9% of the variance. Although the categories were presented
with equal frequency, for some reason restricted versions with equal biases across the three
categories fitted the data significantly worse than the unrestricted versions.

Prototype models, which assume that categorization decisions are based on similarity to an
abstracted prototype (e.g., Homa, 1984; Reed, 1972), were also formalized within the MDS
framework. The prototype models were identical to the GCM except that rather than com-
puting the summed similarity of an item to all category exemplars, one computes its
similarity to the category prototype instead. Two models were tested: in Prototype-A, the
derived MDS coordinates of the prototypes were used; in Prototype-B, the prototype repre-
sentations were generated by spatially averaging old category instance representations (Reed,
1972; Nosofsky, 1988; Shin & Nosofsky, 1992). As shown in Table 2, both 16-parameter
models fitted the data worse than the 4-parameter GCM. Predicted categorization accura-
cies for prototypes, old items, and new items are shown in Figure 6. Prototype-A did not
capture the qualitative trends in the data from the no prototype condition, and under-
estimated the difference in accuracy between old and new items in both conditions.
Prototype-B captured most of the qualitative relations, but systematically under- and over-
estimated the accuracies for prototypes and new items, respectively.

A combined exemplar-plus-prototype model was also investigated (Shin & Nosofsky,
1992). In this model, evidence for a given category was equal to the summed similarity of an
item to all category exemplars plus a weighted similarity to the category prototype,

[0S +7-Si)]
[0(Z S5 + S )

where y is the weight for the prototype and s;,5 is the similarity between item i and the proto-
type for category 7. Note that y = 0 yields the standard GCM. In fitting the combined
model to the data, separate y terms were assumed for the no prototype and prototype con-

P(F]i) = S

KeR

ditions. When the prototype was given by the MDS-derived coordinates, the combined
model did not fit significantly better than the standard GCM, —InL. = 571.27, x*2) = 0.21.
When the prototype was given by the average of the old exemplars, the combined model did
fit significantly better than the standard GCM, —InL. = 568.19, x*2) = 7.08, with
y(no prototype) = 3.408 and y(prototype) = 1.034. However, note that the improvement in
fit was quite small. Moreover, if anything, we expected to find greater use of prototype
information in the prototype conditions; rather, the y term was greater in the no prototype
condition.

Discussion

In Experiment 1, we were able to empirically document an extreme prototype enhancement
effect in which category prototypes were classified more accurately than other category
instances. This finding contrasts with most other studies using the dot-pattern paradigm in
which the category prototypes were typically classified with intermediate accuracy relative
to individual training instances of a category. The ability of exemplar-based models, such as
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Figure 6. The left panel displays Prototype-A and the right panel displays Prototype-B predicted categorization

accuracies, collapsed across individual stimuli, for prototypes, old items, and new items in Experiment 1. The no
prototype condition is indicated by open triangles, and the prototype condition is indicated by filled circles.

the GCM, to account for extreme prototype enhancement hinges on the psychological
representation of the category prototypes, depending on whether these physical central
tendencies are represented as psychological central tendencies or as psychological extreme
points.

MDS analyses of participants’ similarity ratings revealed that the prototypes were
represented as extreme points in the psychological space relative to the category
instances. This result is informative because the typical assumption expressed in the
categorization literature is that the physical manipulation of prototypes in generating
category instances has a fairly direct mapping onto the psychological representations of
those prototypes and category instances (e.g., McLaren, Bennet, Guttman-Nahir, Kim,
& Mackintosh, 1995).

The GCM can qualitatively predict extreme prototype enhancement when prototypes
are represented as extreme points in the psychological space. We were also able to
demonstrate that the GCM could provide a good quantitative account of the observed cate-
gorization data without needing to include adjunct prototype abstraction processes as well.
Even in conditions in which the category prototypes were familiar shapes, people still
seemed to rely on exemplar information for making categorization decisions.

EXPERIMENT 2

The goal of Experiment 2 was to find additional evidence for extreme prototype enhance-
ment and for extreme point prototype representations using novel prototypes. To “induce”
extreme point representations for novel prototypes, we chose to constrain the category
prototypes to have bilateral vertical symmetry (see Figure 7). Symmetry, in a variety of
forms, is pervasive in the natural world (Weyl, 1952), and people are extremely sensitive to
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Figure 7. The top part of the figure shows the three prototype patterns for Categories A, B, and C, respectively,
used in Experiment 2. Under each prototypeis an example of a moderate-level distortion created from that pattern.

symmetry, especially around the vertical axis (e.g., Baylis & Driver, 1995; Bornstein &
Krinsky, 1985; Wagemans, 1993; Wagemans, Van Gool, & d’Ydewalle, 1992). Moreover,
canonical forms of objects such as leaves, crystals, or sea shells are often pictorially repre-
sented in nature field guides with near perfect symmetry; most people would agree that such
perfect natural forms are the prototypes of those categories.

Method
Participants

Participants were 118 undergraduates who received course credit. All participants were tested
individually.

Stimuli

Three prototype patterns of 10 dots each were created; each was constrained to be symmetric
about the vertical axis. Five points were randomly located on the left side of the pattern and five points
were mirrored on the right side of the pattern. One dot of a pair was first randomly located in the
30 X 30 grid; the second dot was located having the same vertical coordinate and the negative hori-
zontal coordinate. For example, if the first point had a grid location of (10,12) the second point had a
grid location of (—10,12). A constraint was imposed that all dots be at least three units apart. Nine
moderate-level distortions (6 bits/dot) of each of these three prototypes were created; six were desig-
nated as old training patterns. Figure 7 displays the three prototype patterns along with an example
distortion.

Procedure

All procedural details were identical to those used in Experiment 1, except that five training blocks
were used.
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Results
Categorization data analyses

The observed categorization response probabilities for each pattern in the no prototype
and prototype conditions are shown in Table 3. A two-way repeated measures ANOVA was
conducted on the accuracy data with no prototype vs. prototype as a between-subjects
factor and type (prototype, old, or new) as a within-subjects factor. A significant main effect
of type was found, F(2, 232) = 27.12, MSE = 0.01; planned comparisons revealed that old
patterns were categorized more accurately than prototypes, and prototypes were categorized
more accurately than new patterns. No main effect or interactions involving no prototype
vs. prototype were significant. Inspection of Table 3 reveals that the effect of type depends
strongly on the category. The prototypes were classified better than the old items in
Categories A and B, but were classified worse than the old items in Category C; Figure 8§
summarizes the observed categorization accuracy for prototypes, old items, and new items
for Categories A and B (as discussed later, the MDS solution revealed a degenerate psycho-
logical configuration for the patterns belonging to Category C, so for illustrative purposes,
data from Category C items were not included in the figure). The goal in the theoretical
analyses will be to attempt quantitative as well as qualitative accounts of this pattern of
results by the GCM, prototype, and mixed models.

Multidimensional scaling analyses

The average similarity matrices were used as input to the INDSCAL scaling model to
derive a six-dimensional MDS solution (see Appendix B). The overall fit of the INDSCAL-
derived distances to the observed similarity ratings was quite good (stress = .068,
r2 = .949). The fits of the INDSCAL solution to the no prototype and prototype groups,
individually, were quite good as well (no prototype stress = .073, > = .942; prototype stress
= .063, 72 = .956).°

Figure 9 displays the first three dimensions of the MDS solution. The Category A proto-
type clearly exhibits an extreme-point representation, and the Category B prototype tends
more towards an extreme point than a central tendency representation. These impressions
are supported by calculation of the within- and between-category distance measures that we
introduced in Experiment 1. For both Categories A and B, the prototypes were ranked first
in terms of the composite measure D707, and were both highly ranked on the component
measures DB and DIW. However, the Category C prototype exhibits neither an extreme
point nor a central tendency representation. (The C prototype was ranked first on the DWW
measure, last on the DB measure, and intermediate on the D7 OT measure.) Unfortunately,
by the chance nature of the prototype distortion procedure, the instances of Category C

5 Nearest neighbour analyses (Tversky & Hutchinson, 1986) were conducted on the observed similarity matrices
and the derived MDS distances. For the observed similarity matrices, in the no prototypecondition, C = 2.533 and
R = 2,467, and in the prototype condition, C = 2.133 and R = 2.333. For the derived MDS distances, in the no
prototype condition, C = 2.467 and R = 2.700, and in the prototype condition, C = 2.267 and R = 2.600. As in
Experiment 1, it does not appear that the category prototypes were nearest neighbours of many category instances.
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TABLE 3
Observed and predicted categorization response probabilities for the no prototype and
prototype conditions in Experiment 2

Observed Generalized context model

No prototype Prototype No prototype Protorype

Stimulus  P(4) P(B) P(C) P(4) P(B) P(C) P(4) P(B) P(C) P(4) P(B) P(C)

Category A

Ap 915 045 040 912 .037 .051 857 074 069 .881 .062  .058
A, 921 028 .051 910 .025 .065 812 .093  .095 .821 .085  .094
A, 751 .090 158 771 085 144 763 135 103 756 142 102
A; 870 .045 085 .884 .028 .088 841  .067 .091 .850 .061  .089
Ay 825 051 124 845 .065 .090 848 076 076 .857 .070  .073
A 819 102 079 .831 .071  .099 830 .078 .092 .839 .071  .091
Ag .881  .051 .068 .890 .042 .068 857 069 .073 .869 .061  .070
A, 661 124 215 715 .088  .198 721 118 161 746  .100  .154
Ay 576 158 266 551 178 271 671 158 170 .669  .154 177
A, 509 113 379 568 076 356 494 192 314 510 178 312
Category B

Bp 141 785 073 102 .833  .065 56 732 112 114 808  .079
B, 13 746 141 105 757 138 Jd13 765 122 (106 783 111
B, 062  .898 .040 .057 .893 .051 102799 099 101 .809  .090
B; 164 763 073 130 .799 .071 19 783 099 108  .808  .085
B, 040 751 209  .040 763  .198 05 725 171 111 733 156
B; 085 701 215 073 726 201 105 .688 207 111 671 218
By 130 689 181 127 706 .167 Jd22 703 174 129 699 172
B, 062 751 .18 .071 .768 .16l A19 724 157 127 722 152
B, JA30 0 735 136 124 757 119 167 686 147 141 741 118
B, 085 729 .18 .082 .737 181 JA38 702 160 138 718 144
Category C

Cp 305 215 480 274 172 554 420222 636 122 167 712
C 141 147 712 150 122729 .088 .112  .800 .092 .095 814
G, 141 107 751 130 099 771 091 .099 .811 .099 .088  .814
C; 096 181 723 110 .147 743 098 132 770 .098  .109  .793
C, JA36 0 102 763 138 .096  .766 .09 121 783 .110 .111  .779
C;s 085 113 802 .073 .105 .822 .090 .102  .808 .101 .098  .800
Cs 073 141 785 .096 .107 .797 .081 .116  .803 .087 .100  .812
C, .073 158 768 .090 .153 757 100 150 750 .098  .120  .781
Gy 136 147 718 170 153 678 Jd19 0 152 729 117 124 759
C. 170 .096 735 127 099 774 42 122 735 147 107 746

Note: Ap = prototype of Category A; A; = old instance of Category A; A, = new instance of Category A.

apparently were extremely similar to one another, as indicated by the compact clustering of
points along the three dimensions shown in Figure 9. Perhaps the lack of variance in the
category instances limited people’s tendency to abstract whatever emergent dimensions
might cause the prototypes to be conceived as extreme points.
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Figure 8. The upper left panel displays observed categorization accuracy, the upper right panel displays GCM
predicted categorization accuracy, the lower left panel displays Prototype-A predicted categorization accuracy, and
the lower right panel displays Prototype-B predicted categorization accuracy collapsed across individual stimuli, for
prototypes, old items, and new items in Experiment 2 (only categorization accuracy for Categories A and B are
included). The no prototype condition is indicated by open triangles, and the prototype condition is indicated by
filled circles.

Categorization theoretical analyses

As in Experiment 1, the full version of the GCM had sixteen parameters, eight for the
prototype and eight for the no prototype condition (five free attention weights, w,,, two free
response biases, by, and one free sensitivity parameter, ¢, in each condition: y could be set
equal to one without much influencing the fit of the model). The predicted response prob-
abilities for each individual stimulus from all three categories for the full model are given in
Table 3; the best-fitting parameters and fit values are given in Table 4 (GCM-16). The
GCM fit quite well, accounting for 97.8% of the variance in the observed data in Table 3
(predictions for just Categories A and B are summarized in Figure 8). For Categories A and
B, the model predicted correctly the prototypes to be classified more accurately than the old
items, and for Category C, the model predicted correctly the prototypes to be classified less
accurately than the old items.
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Figure 9. The left panel displays Dimensions 1 and 2, and the right panel displays Dimensions 2 and 3 of the
six-dimensional MDS solution given in Appendix B for Experiment 2. Category A exemplars are indicated by
triangles, Category B exemplars are indicated by the squares, and Category C exemplars are indicated by circles.
Numbers 1-6 indicate old exemplars, letters a—c indicate new exemplars, and P indicates the prototype of each
category.

Because no statistical difference was found between the prototype and no prototype con-
ditions, we expected that restricted versions that constrained parameters to be the same in
both conditions would also fit the data quite well. First, an eight-parameter version was
fitted to the data in which all eight parameters were constrained to be the same in both con-
ditions (GCM-8). This model did not fit the data significantly worse than the full version
of the GCM, x%8) = 5.86, p > .10. Second, a one-parameter version, with attention
weights set equal to the INDSCAL weights from the MDS solution, equal biases for each
category, and the same sensitivity parameter for both conditions, fitted the data quite well,
accounting for 96.9% of the variance; however, this model did fit significantly worse than
the full version, x*(15) = 41.90, p < .001.

The two versions of the prototype model were also fitted to the observed data. Best
fitting parameters and fit values for both models are given in Table 4. Prototype-A, which
assumes the MDS coordinates of the prototypes, fitted the data quite well, accounting
for 95.5% of the variance in the observed data (predictions for just Categories A and B
are summarized in Figure 8). However, note that this 16-parameter prototype model
fitted the data worse than the l-parameter version of the GCM. Furthermore, this
version of the prototype model is not the same version of the prototype model that fared
well in Experiment 1 (in that experiment, it was Prototype-B that provided a reasonably
good fit). Thus, considerations of parsimony favour the exemplar-based interpretation of
the data.

Prototype-B, which assumes the prototypes to be central tendencies of the old exemplars,
fitted the data quite poorly, accounting for only 81.8% of the variance (predictions for just
Categories A and B are summarized in Figure 8). This model performed most poorly in the
prototype condition, accounting for only 67.9% of the variance (note that the abstracted
prototype in the prototype condition was assumed to be an average of the old distortions and



TABLE 4
Maximum-likelihood parameters and summary fits of the categorization data for
the full parameter GCM, restricted versions of the GCM, and prototype models in
Experiment 2

Parameter  GCM-16  GCM-8  GCM-1  Prototype-A  Protorype-B

No prototype c 1.856 1.890 1.875 1.291 1.329
w1 354 344 207 521 516
W, .320 337 2600 479 441
w3 .000 .000 138 .000 .000
Wy .007 .006 154 .000 027
W3 156 171 133 .000 .002
We .163 142 127 .000 015
by 315 324 333 402 345
by 315 317 333 344 314
bc 371 359 333 255 342
Fit —InL 227.94 230.36 248.89 290.56 259.09
RMSE 0.046 0.047 0.054 0.068 0.057
% Var 97.7 97.7 96.9 95.0 96.5
Prototype c 1.933 1.890 1.875 1.365 2.561
Wy 329 344 2703 486 331
W) 353 337 613 514 351
w3 .000 2000 6l .000 .000
Wy .002 006 156 .000 .169
W .186 A71 146 .000 102
We 130 142 126 .000 047
by 333 324 333 402 245
by 319 317 333 .346 394
bc 347 339 333 253 362
Fit —InL 222.46 225.00 241.92 267.90 922.24
RMSE 0.045 0.047 0.050 0.063 0.179
% Var 97.9 97.8 97.5 96.0 67.9
Overall Fit —InLL 450.40 455.36 490.81 558.45 1181.33
RMSE 0.046 0.047 0.052 0.066 0.133
% Var 97.8 97.7 97.2 95.5 81.8

Note: %Var = variance accounted for (in percentages). ¢ = general sensitivity parameter;
w,, = attention weight given to dimension m; b; = bias for making category j response;
—InL = negative value of log-likelihood; RALSE = root mean squared error between
observed and predicted categorization probabilities. GCM-16 = full parameterized GCM;
GCM-8 = GCM constrained with weights, biases and sensitivities common between the
no prototype and prototype conditions; GCM-1 = GCM constrained with weights equal
to INDSCAL weights, equal category biases, and sensitivities common between the no
prototype and prototype conditions; Prototype-A = prototype model using MDS-derived
“prototypes”; Prototype-B = prototype model using average of old exemplars. Underlined
values are constrained parameters.

218
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the presented prototype). The combined exemplar-plus-prototype model was also investi-
gated. As in Experiment 1, additional weighted prototypes were assumed to be represented
in memory. Neither a model that assumed the MDS coordinates of the prototype,
—InL. = 450.39, x*2) = 0.0001, nor a model that assumed the average prototype,
—InL = 448.67, x%(2) = 2.99, fitted significantly better than the full version of the GCM.

Discussion

In Experiment 2, we found that novel, vertically symmetric, dot-pattern prototypes gave rise
to an extreme prototype enhancement effect (for two of the categories tested) and that the
prototypes tended to be represented as extreme points rather than as central tendencies.
Again, although the prototypes were indeed physical central tendencies of their distortions,
they did not emerge as psychological central tendencies. Thus, the finding that dot-pattern
prototypes may often have extreme-point representations appears to have some generality.

Although the category prototypes tended to have a “special” representational status as
relative extremes in the psychological space, they did not have a special status with regards
to making categorization decisions. Extending the theoretical results of Experiment 1, a
pure exemplar model (the GCM) provided a good account of the categorization data,
whereas simple prototype models fared less well. Furthermore, the combined exemplar-
plus-prototype models, which supplement exemplar generalization with prototype abstrac-
tion, did not provide a significantly better account of the data than did the GCM.

EXPERIMENT 3

The final experiment in this study examined a finding of extreme prototype enhancement
reported by McLaren et al. (1995). These researchers had participants learn two categories
of checkerboard patterns that were constructed so that the prototypes were physical central
tendencies of the category instances (see also Mclaren, 1997; McLaren, Leevers, &
Mackintosh, 1994; Wills & MclLaren, 1998). The prototype of Category A was a random
configuration of white and black squares, as shown in Figure 10. The prototype of Category
B was created by randomly switching a relatively large proportion of squares of the
Category A prototype from white to black or from black to white, as shown in Figure 10.
From these category prototypes, two types of instance were generated with differing
relationships to the prototype of the other category. Close patterns were generated by
switching approximately 10% of the unique squares of one prototype to the colour of the
other prototype. This procedure created patterns that were physically more similar than was
the prototype to members of the contrast category (an example from each prototype is shown
in Figure 10). Far patterns were generated by switching approximately 10% of the squares
common to both prototypes to the opposite colour. This procedure created patterns that
were physically more dissimilar than was the prototype to members of the contrast category
(an example from each prototype is shown in Figure 10). Thus, physically, this procedure
produces patterns with roughly the following schematic arrangement:

FAR-A PROTOTYPE-A CLOSE-A CLOSE-B PROTOTYPE-B FAR-B
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Prototype Far

Category A

Category B

Figure 10. Stimulus used in Experiment 3. The top part of the figure shows the Category A prototype, a close
example, and a far example. The bottom part of the figure shows the Category B prototype, a close example, and a
far example.

MclLaren et al. (1995) found the category prototypes to be the best classified items, a clear
case of extreme prototype enhancement. Indeed, McLaren et al. conducted formal theo-
retical analyses involving the GCM that assumed that the distance between checkerboard
patterns was directly related to the number of mismatching squares computed on a city-
block metric. In these analyses, McLaren et al. demonstrated that the GCM failed to
account for the data and argued that the results posed a serious challenge to exemplar
models in general. Lamberts (1996) subsequently demonstrated that by making alternative
metric assumptions for calculating distances among the physically defined patterns,
exemplar models, such as the GCM, could account for McLaren et al.’s data.

We hypothesized, however, that an even more fundamental issue might also be involved.
In particular, the configuration of checkerboard-pattern stimuli in psychological space may
be quite different from the physical arrangement defined by the number of overlapping
white and black squares. Once again, although the prototypes are central tendencies in the
physically defined space, they may exist as extreme points in a psychologically defined space.

McLaren et al. (1995) acknowledged the possibility that the individual black and white
squares might give rise to higher order emergent features in which the prototypes were no
longer central tendencies. To explore this possibility, they tested a small subset of partici-
pants in a separate identification training session. In this session, participants learned a
unique label for two prototypes, two close patterns, and two far patterns; the identification
confusion data were then used as input for a multidimensional scaling analysis. Although
Mcl.aren et al. found some evidence for a psychological arrangement of the stimuli com-
parable to the physical arrangement, they reported only a one-dimensional scaling solution.
It seems much more likely that these relatively complex checkerboard patterns should give
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rise to higher dimensional psychological scaling solutions. Moreover, the fact that only six
of the original patterns were examined in the McLaren et al. study potentially limits the
generalizability of their results.

Our goal was to replicate the essential features of the MclLaren et al. experiments while
also conducting a comprehensive similarity rating task in which similarities among all
patterns were measured. Unlike in the McLaren et al. study, all participants in our study
learned the same set of stimuli. By using this method, the psychological scaling solution
reflects an arrangement of the complete set of actual stimuli that were learned rather than
an approximate arrangement of a subset of a general class of stimuli. As was the case in
Experiments 1 and 2, we predicted that extreme prototype enhancement would be observed
and that the prototypes patterns would emerge in the scaling solution as extreme points
rather than central tendencies.

Method
Participants

Participants were 133 undergraduates who received course credit. All participants were tested
individually.

Stimuli

Unlike the original McLaren et al. (1995) study, all participants in this experiment learned to cate-
gorize the same set of patterns. Therefore, the stimulus generation procedure, which follows, was
performed only once before the experiment was conducted.

The stimuli were 16 X 16 checkerboard patterns of white and black squares, 4 pixels on a side (see
Figure 10 for examples). The stimuli were presented at a video resolution of 640 X 480 on 14-in com-
puter monitors. The prototype for Category A was a completely random pattern of white and black
squares. The prototype for Category B was created by randomly changing 6 squares per row from
white to black or from black to white (96 squares changed). A fixed set of 16 “close” patterns was gen-
erated from each prototype by switching a randomly selected 25 of those 96 squares not in common
with the other prototype from white to black or from black to white. This procedure produces patterns
that have greater physical overlap with the other prototype than does their prototype (although they
still have physically more overlap with their own prototype). For each category, 12 of the close
patterns were designated training patterns, and the remaining 4 were designated transfer patterns. A
fixed set of 4 “far” patterns was generated from each prototype by switching a randomly selected 25
of the 160 squares in common with the other prototype from white to black or from black to white.
This procedure produces patterns that have less physical overlap with the other prototype than does
their prototype.

Procedure

A standard category learning/transfer paradigm was used. During training, participants learned to
classify the 12 designated close patterns from each category. Each of these 24 close patterns was pre-
sented once per block for five training blocks. Corrective feedback was supplied for 3 s after every
response. After an intertrial interval (I'TT) of 500 ms the next pattern was displayed. Participants were
urged to respond more quickly if their response times exceeded 4 s. The assignment of category to
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response key was randomized for every participant. Responses were made by pressing labelled keys on
a computer keyboard.

During transfer, all 42 patterns were tested (12 old close, 4 new close, 4 far, and the prototype from
each category). Each pattern was presented once per block for two transfer blocks. No corrective feed-
back was provided. The computer merely reported “OK” for 2 s to indicate that a response had been
recorded. After an I'TT of 500 ms the next pattern was displayed.

Participants also rated the pairwise similarities among patterns. Because of the large number of
possible pairs, each participant rated only one third of them (randomly selected for each participant).
On each trial, two patterns were presented side by side. Participants rated similarities using a 10-point
scale (1 = very dissimilar, 10 = very similar).

Results
Categorization data analyses

Of the 133 participants, 25 were removed for failing to reach a fairly lax criterion of at
least 60% correct on the last block of training. The observed categorization probabilities for
each pattern in the transfer phase are shown in Table 5. As summarized in Figure 11, on
average, the prototypes were classified the best, followed by the old close patterns, the far
patterns, and the new close patterns. A one-way repeated measures ANOVA revealed a sig-
nificant main effect of stimulus type, F(3, 321) = 60.40, MSE = 0.01. Planned comparisons
revealed that prototype classification accuracy was significantly the best, old close and far
pattern classification accuracies were, on average, not significantly different from one
another, and new close pattern classification accuracy was, on average, the worst. Extreme
prototype enhancement was observed in which the prototypes were classified better than
any other pattern.

Overall, these results largely replicate those of McLaren et al. (1995): The prototypes
were classified better than any other patterns, even though the statistical distortion algo-
rithm produced prototypes that were roughly physical central tendencies of the category
instances. (Unlike McLaren et al., however, we did not find that new far patterns were
classified significantly better overall than old close patterns, although this result appears to
depend on the specific category being considered—see Figure 11.) The key question now is
to examine the psychological scaling solution for these checkerboard patterns and to use it
in conjunction with the GCM to test the exemplar-model predictions.

Multidimensional scaling analyses

The average similarity rating matrix was used as input to the KYST scaling model
(Kruskal, Young, & Seery, 1973).° The resulting scaling solution had a stress of .090. The
first two dimensions of the solution, which are most informative, are shown in Figure 12,
and the complete scaling solution is reported in Appendix C. Along Dimension 1, the first
principal component of the KYST solution, the category prototypes have extreme values

% Because each subject only rated 1/3 of the possible pairs of checkerboard patterns, an average similarity
rating matrix had to be used for the scaling analyses. Because only a single experimental condition was tested,
INDSCAL could not be used in the present study.
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TABLE 5
Observed and predicted categorization response accuracy for
Experiment 3

Category A Category B
Stimulus ~ Observed — Predicted Stimulus ~ Observed — Predicted
PA 0.944 0.898 PB 0.935 0.882
CA, 0.796 0.803 CB,; 0.620 0.785
CA, 0.870 0.745 CB, 0.857 0.836
CA; 0.833 0.799 CB; 0.838 0.860
CA, 0.843 0.863 CB, 0.829 0.842
CA; 0.796 0.772 CB; 0.685 0.742
CA¢ 0.926 0.888 CBg 0.759 0.750
CA, 0.875 0.884 CB, 0.847 0.824
CAg 0.880 0.855 CBg 0.866 0.874
CAy 0.815 0.821 CB, 0.810 0.829
CAy 0.810 0.838 CByy 0.690 0.758
CA; 0.866 0.841 CBy; 0.759 0.721
CA,, 0.893 0.845 CBy; 0.755 0.816
Ca, 0.681 0.727 Cb, 0.722 0.760
Ca, 0.815 0.872 Cb, 0.625 0.776
Ca; 0.852 0.802 Cbs 0.745 0.795
Cay 0.875 0.819 Cb, 0.574 0.576
FA, 0.662 0.784 FB, 0.884 0.748
FA, 0.713 0.726 FB, 0.810 0.751
FA; 0.759 0.790 FB; 0.894 0.767
FA, 0.722 0.767 FB, 0.861 0.806

Note: CA; = old close pattern of Category A; Ca; = new close pattern
of Category A; FA; = far pattern of Category A; PA = prototype of
Category A.

and are not central tendencies of the old patterns. However, the prototypes had roughly
equal values along the other dimensions, and calculations of the within- and between-
category distance measures that we introduced in Experiment 1 produced intermediate
values for the prototypes. Although the prototypes for these grid patterns are not strictly
extreme points by our criteria proposed earlier, the extreme values rather than central
tendencies along Dimension 1 may allow the exemplar model to adequately predict the
extreme prototype enhancement effects and the other aspects of the categorization data.

Categorization theoretical analyses

A version of the GCM with only two free parameters was fitted to the observed data.
Parameters were a free sensitivity parameter, ¢, and a free response scaling term y. Unlike
INDSCAL, the orientation of the psychological dimensions is arbitrary in the KYST
model, so incorporating the dimension-weighting parameters was not possible. The
predicted categorization response accuracies for the model are shown in Table 5 and are
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Figure 11. Observed (filled circles) and GCM predicted (open triangles) categorization accuracy, collapsed
across individual stimuli, for prototypes, close (old), close (new), and far patterns in Experiment 3.

summarized in Figure 11. This two-parameter version of the GCM fit fairly well, account-
ing for 95.9% of the variance in the observed data, —InL. = 228.11, RMSE = 0.063. The
best fitting parameter values were ¢ = 1.336 and y = 4.228.

Most importantly, the prototypes were predicted to be the best classified items, as was
observed. Contrary to McLaren et al. (1995), when combined with the multidimensional
scaling solution derived from the similarity ratings participants made, a pure exemplar
model was able to account for the qualitative finding of extreme prototype enhancement
effects observed in the present experiment.

Inspection of Figure 11 does reveal that the predicted prototype classification prob-
abilities are somewhat smaller than observed. As in the previous experiments, we examined
a combined exemplar-plus-prototype model in which evidence for a given category was
equal to the summed similarity of an item to all category exemplars plus a weighted simi-
larity to the category prototype. The combined model did provide a significantly better fit
to the observed data than did the pure exemplar model, x%(1) = 22.47, accounting for 96.6%
of the variance, —Inl. = 205.64, RMSE = 0.058. Although this mixed model somewhat
more accurately predicted the prototype classification probabilities, it did not provide
noticeably improved fits for the other stimulus types.

Discussion

In this experiment, we replicated the extreme prototype enhancement effects observed in a
series of studies by McLaren et al. (1995).7 From these results, McLaren et al. argued that
“an exemplar theory of the type considered here is constrained to predict that far exemplars
will always be categorized at least as well as prototypes” (p. 671; but see Lamberts, 1996).

7 We performed two additional replications and extensions of the McLaren et al. (1995) study using different
stimulus sets. These studies provided additional converging evidence for the results reported here. In both studies,
extreme prototype enhancement was observed, and the prototypes were psychological extreme points. Moreover,
in one of the two studies, the far stimuli were categorized significantly more accurately than the close stimuli, repli-
cating the original McLaren et al. results.
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Figure 12. Dimensions 1 and 2 of MDS solutions for Experiment 3. Category A patterns are indicated by circles,
and Category B patterns are indicated by squares. White symbols indicate old close patterns, grey symbols indicate
new close patterns, black symbols indicate far patterns, and P’s indicate prototypes.

MclLaren et al.’s claim, however, assumes that the psychological space for the stimuli has a
direct correspondence with the physical one. In particular, they assume that in addition to
being physically defined central tendencies, the prototypes are psychological central
tendencies as well. By contrast, our MDS analyses revealed that the prototypes gave rise to
extreme values along one of the emergent psychological dimensions. Furthermore, when a
particular exemplar model, the GCM, was used in combination with this derived MDS
solution, it provided a reasonably good account of the extreme prototype enhancement that
was observed (but see McLaren, 1997, and Wills & McLaren, 1998, for other experimental
situations involving these checkerboard stimuli that may involve prototype abstraction
following categorization or preexposure).

An assumption made by MclLaren et al. (1995) was that each 16 X 16 checkerboard
pattern was represented within a 256 dimensional space. In this space, each psychological
dimension corresponds directly to the primitive feature of some given square being white or
black. We contend that this assumption is probably unjustified, as our MDS analyses reveal.
Inspecting the patterns in Figure 10, it seems entirely reasonable to suppose that partici-
pants might extract higher level configurations of black and white squares. Clearly, no
simple feature-based account could capture properties such as the degree of symmetry in a
pattern or the “clumpiness” of a pattern. Also, depending on whether white is foreground
or background, different kinds of configurations can emerge. For example, informal dis-
cussions with a subset of participants revealed that some noticed configurations such as the
white “staircase” in the upper left corner of the Category A prototype or the black “island”
in the upper right hand corner of the Category A prototype. The extreme value of the
prototypes along Dimension 1 may in part reflect a fairly sophisticated feature creation
process, which a simple elemental approach to understanding psychological dimensions
overlooks (see Schyns, Goldstone, & Thibaut, 1998).
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GENERAL DISCUSSION

The present article was initially motivated by a set of results from the classic dot-pattern
categorization paradigm (Homa, 1984; Posner & Keele, 1968, 1970). In such experiments,
prototypes are often classified as well as and often times better than old training patterns.
Although these results were originally taken as solid evidence for the existence of a proto-
type abstraction process, these effects have since been shown to be entirely consistent with
exemplar models of categorization (e.g., Busemeyer et al., 1984; Hintzman, 1986; Hintzman
& Ludlam, 1980; Nosofsky, 1988; Shin & Nosofsky, 1992). Although prototype enhance-
ment effects are regularly observed in such studies, they are typically not very large, and,
almost always, at least some of the individual old exemplars are classified better than the
prototypes. Whereas innumerable dot-pattern studies have reported prototype enhance-
ment effects in which the prototypes are classified as well as or better than the average of the
old distortions, few have reported extreme prototype enhancement effects in which the
prototypes are classified better than all instances of a category.® As described earlier, finding
extreme prototype enhancement for prototypes that are psychological central tendencies of
old distortions may prove extremely difficult, if not impossible, for an exemplar model, such
as the GCM, to account for—such a finding could potentially falsify the GCM.

Therefore, our goal in developing these studies was to attempt to empirically create
extreme prototype enhancement effects that might prove exceptionally challenging to
exemplar models. In Experiment 1, we did so by using dot-pattern prototypes that were
simplified representations of highly familiar objects. This method is precisely the one that
Posner and Keele used in their very first studies. It seemed reasonable to hypothesize that if
extreme prototype enhancement were ever to be found in a dot-pattern paradigm, it would be
found using such prototypes. In Experiment 2, we used symmetric dot-pattern prototypes.
Again, it seemed reasonable that such prototype patterns might exhibit a special status
vis-a-vis their distortions, which would cause them to be classified more accurately. Finally, in
Experiment 3, we borrowed an experimental paradigm recently reported by Mcl.aren et al.
(1995), using checkerboard patterns of white and black squares, that was also shown to give
rise to very high classification accuracy for the category prototypes. In Experiments 1 and 3,
we found evidence for extreme prototype enhancement—category prototypes were classified
better than any of the old category examples on which participants were trained. Tendencies
for extreme prototype enhancement were also observed in Experiment 2.

Recall, these results pose a serious challenge to exemplar models only if the prototypes,
which are physical central tendencies of category instances, are psychological central
tendencies as well. For the dot-pattern stimuli used in Experiments 1 and 2, and for the
checkerboard patterns used in Experiment 3, the categories were constructed in such a way
that the prototypes were physical central tendencies of the category instances. That is, a
composite image made by averaging together all of the category instances looks almost iden-
tical to the category prototype. The fact that the prototypes are physical central tendencies

8 Unfortunately, only quite recently have studies reported classification probabilities for all of the individual
stimuli used in dot-pattern experiments. Typically, only average classification accuracies for various types of
stimulus (prototype, old distortion, new distortion) were reported, making it impossible to assess whether extreme
prototype enhancement was observed.
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does not necessarily imply that they are psychological central tendencies as well. For
stimuli with clearly defined psychological dimensions, such as semicircles of varying sizes
containing radial lines of varying angles (e.g., Nosofsky, 1986; Shepard, 1964), tones vary-
ing in loudness and pitch (Melara & Marks, 1990), or perhaps even schematic faces varying
the location of facial features (e.g., Nosofsky, 1991), a fairly direct mapping between
physical and psychological dimensions may exist. However, the mappings between physical
properties and psychological dimensions of fairly complex stimuli, such as artificial dot-
patterns or checkerboard patterns and perhaps more natural stimuli, are not so clearly
defined (Hock et al., 1988; Shin & Nosofsky, 1992).

To determine the location of the category prototypes relative to the other category
instances, participants provided similarity ratings between pairs of stimuli. These ratings
were then subjected to a multidimensional scaling analysis to recover the underlying psycho-
logical space of the stimuli used in each experiment. Across all three experiments, the
scaling analyses revealed the category prototypes to be relative extremes in the psychological
space rather than central tendencies. Across all three experiments, when coupled with this
obtained psychological scaling solution, one particular exemplar model, the GCM, could
both qualitatively and quantitatively account for the observed extreme prototype enhance-
ment effects, as well as other aspects of the observed data. By contrast, various types of
prototype model either failed to account for the observed data, or the best-fitting version of
the prototype model was not of the same type in different experiments. In addition, little or
no evidence was found that pointed to the need to supplement an exemplar model with an
additional prototype abstraction process.

It should be stressed that the MDS solutions incorporated in the GCM modelling were
derived from similarity judgements following category learning. Although research on this
issue is needed, we think it is likely that the modelling approach would be considerably less
successful if the similarity judgements were obtained in a completely independent context.
The present types of complex dot-pattern can probably be coded and represented in a variety
of highly flexible ways. Combined with the fact that similarity judgements are themselves
highly context dependent (Medin et al., 1993; Tversky, 1977), this flexibility of coding
suggests a need to derive the MDS representation in the context of the category-learning
situation. The most challenging future goal is to understand how the psychological repre-
sentations are formed—how and why did the prototypes come to be represented psycho-
logically as extreme points? Much of the work in categorization has assumed
representations to remain relatively unchanged with experience, apart from changes in how
dimensions are selectively attended (Kruschke, 1992; Nosofsky, 1986). Recent work, how-
ever, has begun to suggest that an important component of categorization involves a more
complex form of perceptual learning—not only must a person learn what features are diag-
nostic, they must also create new diagnostic features (e.g., Lesgold et al., 1988; Schyns et al.,
1998; Schyns & Murphy, 1991; Schyns & Rodet, 1997). Rather than assume that the
perceptual system provides a set of fixed features to be used as inputs to higher level cate-
gorization processes, Schyns et al. (1998) have suggested that flexible, functional features
may be created as part of the process of category learning. A reasonable hypothesis is that
the extreme-point prototype representations in the present studies arose from the
emergence of these diagnostic, functional features in the context of learning these particu-
lar dot-pattern categories. One possible starting point for incorporating perceptual learning
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mechanisms into theories of categorization might be an associative model proposed by
Mcl.aren and colleagues (MclLaren, Kaye, & Mackintosh, 1989; McLaren, 1997).

Given the nature of the dot-pattern stimuli and the flexibility of coding that arises, it
seemed necessary to collect the similarity judgement data only following the completion of
category learning. A potential concern that arises is that the prototypes emerged as extreme
points in the similarity representations because they were judged as the best examples of
their categories. According to this view, the prototypes are indeed central tendencies in the
“true” psychological space in which the patterns are embedded. Because observers may
allow judged category goodness to influence their similarity ratings, however, the MDS
analyses of the similarity data revealed a distorted psychological space. To the extent that
functional features are indeed created by the act of categorizing, as hypothesized by Schyns
and his colleagues (Schyns et al., 1998; Schyns & Rodet, 1997), these alternatives become
extraordinarily difficult to disentangle. Nevertheless, we can point to some indirect evidence
that poses problems for the prototype-as-central-tendency view. First, consider category-
learning situations in which stimuli vary along a few salient psychological dimensions and
where creation of new functional features tends not to take place. Examples include learn-
ing to classify colours varying in their brightness and saturation, or simple geometric forms
varying in their size and angle of orientation. If the view is that the central tendency of the
distribution is privileged, and similarity judgements among patterns simply follow judged
category goodness, then when using such stimuli, the central tendency should be the best
classified item and an M DS analysis based on similarity data should place it at the extremes
of the category distribution. A vast literature, however, indicates that such is not the case.
Instead, when stimuli with these types of clear-cut psychological dimension are used, the
central tendency tends not to be among the most accurately or rapidly classified objects, and
scaling solutions based on similarity judgement data place it in the centre of the category
distribution. Thus, although we cannot rule out the possibility that in the present experi-
ments the prototype was a “true” psychological central tendency and that the similarity
judgements led to a distorted representation, this view appears to be severely limited in its
generality.

The bottom line is that we have provided evidence in favour of one particular theoretical
approach to understanding extreme prototype enhancement effects that are observed for
stimuli composed of highly flexible and complex psychological dimensions. In this
approach, the prototypes are to be interpreted as extreme points in the psychological simi-
larity space that emerges from categorization experience. The MDS-based exemplar model
has been highly successful at accounting for details of classification performance in numer-
ous domains involving stimuli varying along clear-cut and salient psychological dimensions.
The present research demonstrates generality for the approach by using the same types of
similarity scaling method as in this previous work, but where the nature of the psychological
dimensions that compose the objects is far more flexible and complex. It is an open question
whether or not alternative models can be developed that match the generality and precision
of this MDS-based exemplar-modelling approach.
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APPENDIX A
Six-dimensional scaling solution for the dot patterns in Experiment 1
Dimension
Stimulus 1 2 3 4 5 6
Triangle
Tp 2.106 —-0.190 —1.490 1.566 0.151 —0.234
T 1.602 —0.009 0.174 0.861 —0.110 —0.265
T, 1.687 —0.323 —0.219 0.681 0.051 —1.020
T; 0.003 —0.044 0.717 0.978 —0.123 —2.586
Ty 1.428 0.342 —0.076 0.454 0.496 0.092
Ts 1.850 —0.097 —0.401 1.079 0.247 —0.372
Ty 0.964 —0.076 0.316 0.773 —0.978 —0.248
T, 1.233 0.392 0.016 —0.004 0.278 —0.800
Ty 1.095 —0.359 0.067 —0.235 —1.552 —1.751
T. 1.054 0.586 —0.035 —0.122 0.881 0.402
Pluses
Pp —1.082 1.921 —3.199 —0.873 0.432 0.535
P, —0.528 1.223 0.041 0.826 —0.745 1.308
P, —0.614 0.648 0.726 —0.749 0.815 1.640
P; —0.532 0.643 0.061 —0.129 1.941 —0.847
| —0.733 1.258 —0.101 —1.298 —0.676 0.363
Ps —1.107 0.330 0.437 0.737 1.919 —0.260
Py —0.791 1.076 —0.436 —1.547 0.465 0.036
P, —0.702 0.782 0.653 0.701 —1.584 0.385
Py —0.713 0.552 0.441 0.036 —0.299 —2.039
P. —0.447 0.991 0.231 —1.754 1.148 —0.468
Fs
Fp —1.200 —2.527 —2.646 —0.442 —0.022 0.980
F, —0.784 —0.110 0.759 1.713 1.706 —0.341
F, —0.457 —0.620 1.490 —1.659 1.459 1.360
F; —0.499 —1.835 —0.044 0.010 —1.127 —0.400
F, —0.292 —0.099 1.129 0.417 —1.428 1.111
F; —0.724 —0.330 0.959 0.744 —1.513 0.201
Fe —0.756 —2.285 —0.857 —0.561 —0.848 0.351
F, —0.151 —1.489 —0.652 0.736 —0.507 0.890
Fy —0.687 —0.708 1.130 —0.646 —0.595 1.584
F. —0.222 0.357 0.811 —2.293 0.119 0.395

Note: INDSCAL weights for the no prototype group are .674, .412,.412,.315,.191, and .156,
and for the prototype group are .714, .474, .262, .281, .206, and .170. Tp = prototype of triangle

category; T; = old instances of triangle category; T,
Category T = triangles; Category P = pluses; Category F = Fs.

new instance of triangle category.
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APPENDIX B
Six-dimensional scaling solution for the dot patterns in Experiment 2
Dimension

Stimulus 1 2 3 4 5 6
Category A

Ap 1.834 —0.070 —0.913 0.702 0.051 0.101
Ay 1.374 0.064 —3.266 —0.726 1.154 —0.162
A, 1.240 —0.257 0.738 —0.012 —1.406 0.735
As 1.578 0.354 —0.434 —0.090 0.943 0.304
Ay 1.628 0.062 0.870 0.095 —0.396 0.086
A; 1.391 0.227 1.597 0.613 0.166 —0.200
Ag 1.611 0.125 0.385 —0.332 0.283 —0.211
A, 1.363 0.441 —0.672 —0.462 0.066 —1.461
Ay 0.941 0.151 2.445 —0.381 —1.078 0.279
A, 0.846 0.605 0.883 0.068 —1.681 —1.958
Category B

Bp —0.333 —1.627 —0.767 1.078 —1.144 0.211
B, —0.628 —1.226 —1.058 —1.136 —1.889 —0.647
B, —0.567 —1.661 —0.165 0.428 0.336 —0.730
B; —0.434 —1.630 —0.373 0.280 —0.332 0.498
By —0.668 —0.636 1.010 —0.202 2.943 —1.491
Bs —0.869 —0.672 —0.329 —2.380 —0.062 —0.154
Bg —0.624 —0.917 0.752 —1.497 0.528 0.412
B, —0.752 —1.319 0.704 —1.357 1.090 —0.707
By —0.467 —1.455 —0.284 0.244 —1.197 1.103
B. —0.590 —1.403 0.094 1.358 0.894 0.689
Category C

Cp —0.742 0.634 —0.498 2.547 —0.317 0.072
(O —0.863 1.213 —0.577 1.118 0.429 —0.133
C, —0.746 1.191 0.085 0.356 1.041 1.369
(0% —0.866 1.150 —0.171 —0.321 —0.801 —0.114
Cy —0.675 1.098 —0.452 1.098 —0.127 —2.612
Cs —0.763 1.015 —0.751 —1.437 0.171 2.397
Cs —0.957 1.166 —0.225 0.153 1.264 0.084
C, —0.971 1.101 0.237 —1.208 —0.445 0.427
(0 —0.733 0.982 1.205 0.767 —0.006 0.189
C. —0.559 1.292 —0.068 0.634 —0.476 1.625

Note: INDSCAL weights for the no prototype group are .707, .600, .158, .154,.133, and .127,
and for the prototype group are .703,.613,.161,.156,.146,and .126. T = prototype of Category
A; A; = old instances of Category A; A, = new instance of Category A.
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APPENDIX C
Six-dimensional scaling solution for the checkerboard patterns in Experiment 3
Dimension

Stimulus 1 2 3 4 5 6
Category A

Cl 0.429 —0.023 0.214 —0.490 —0.175 0.307
C2 0.462 —0.015 —0.440 0.597 —0.082 0.323
C3 0.489 0.028 0.481 —0.051 0.755 0.133
C4 0.602 0.089 0.335 —0.160 0.173 0.288
C5 0.520 —0.236 —0.122 —0.471 0.359 0.171
C6 0.836 0.107 0.050 0.267 0.144 —0.035
C7 0.802 0.225 —0.122 0.057 —0.146 0.323
C8 0.624 0.377 0.361 0.004 0.164 —0.315
C9 0.471 0.477 0.179 0.088 —0.668 0.098
Cl10 0.515 0.068 0.353 —0.298 —0.199 —0.259
Cl1 0.526 —0.046 0.168 0.235 —0.412 0.350
C12 0.705 0.529 —0.128 0.176 —0.256 —0.350
C13 0.388 0.468 —0.140 —0.440 —0.334 0.520
Cl4 0.839 0.519 0.137 0.447 0.045 0.150
Cl15 0.682 0.127 —0.236 —0.505 0.017 —0.215
Cl6 0.719 0.050 —0.186 0.016 0.250 —0.335
F1 0.677 —0.447 0.078 0.529 0.008 —0.562
F2 0.847 —0.864 —0.899 —0.060 —0.121 0.141
F3 0.611 —0.758 0.471 —0.003 0.028 —0.220
F4 0.662 —0.794 —0.085 0.254 0.211 0.046
P 0.924 —0.114 0.166 0.041 —0.079 —0.086
Category B

Cl —0.453 —0.203 —0.444 0.530 0.031 —0.196
C2 —0.636 0.262 —0.020 0.165 0.608 —0.022
C3 —0.576 0.187 —0.540 0.170 0.422 0.108
C4 —0.715 0.167 —0.385 —0.028 —0.450 0.062
C5 —0.433 —0.534 0.126 —0.594 0.358 0.088
C6 —0.487 —0.368 0.070 —0.542 —0.213 0.073
C7 —0.688 0.446 0.099 0.363 0.128 0.243
C8 —0.809 —0.367 —0.298 —0.388 0.293 0.078
C9 —0.522 0.619 —0.379 0.273 0.375 —0.177
Cl10 —0.327 0.515 —0.475 —0.303 0.156 —0.426
Cl1 —0.511 0.563 0.204 0.059 —0.459 0.138
C12 —0.583 0.034 —0.268 —0.086 —0.039 0.484
C13 —0.610 —0.070 —0.106 —0.269 —0.360 —0.631
Cl4 —0.535 —0.361 —0.519 —0.087 —0.393 —0.322
Cl15 —0.616 0.520 0.063 —0.217 0.332 0.143
Cl6 —0.308 0.246 0.517 —0.597 0.156 —0.335
F1 —0.987 —0.320 0.843 0.261 —0.325 0.043
F2 —0.769 —0.590 0.345 0.457 0.291 0.564
F3 —0.836 —0.415 0.199 0.114 —0.725 —0.058
F4 —0.925 —0.075 0.391 0.481 0.177 —0.459
P —1.006 —0.024 —0.054 0.008 —0.048 0.127

Note: C1-C12 = old close patterns; C13—C16 = new close patterns; F1-F4 far patterns;

P = prototype.

235



Copyright of Quarterly Journal of Experimental Psychology: Section A is the property
of Psychology Press (T&F) and its content may not be copied or emailed to multiple
sites or posted to a listserv without the copyright holder's express written permission.
However, users may print, download, or email articles for individual use.



