
According to exemplar models of old–new recognition 
(Gillund & Shiffrin, 1984; Hintzman, 1988; Lamberts, 
Brockdorff, & Heit, 2003; Medin & Schaffer, 1978; 
Nosofsky, 1988), people represent lists of study items in 
terms of individual exemplars, with each exemplar cor-
responding to an individual study item. In most versions 
of these models, test items are assumed to give rise to a 
global activation of the exemplar-based memory repre-
sentation. The greater the degree of activation, the more 
familiar is the test item, and the greater is the probability 
that the observer judges the item to be old.

A representative of this class of global-familiarity ex-
emplar models is the generalized context model (GCM; 
Nosofsky, 1986, 1991). In the GCM, exemplars are rep-
resented as points in a multidimensional psychological 
space, and the similarity between exemplars is a decreas-
ing function of distance in the space. In the model, global 
activation or familiarity is based on the summed similarity 
of a test item to all of the stored study list exemplars. The 
model has been applied primarily in domains involving 
the recognition of simple perceptual stimuli that varied 
along a few salient dimensions, such as colors, schematic 
faces, and geometric forms varying in size and orienta-
tion. In these domains, fine-grained measurements can be 
obtained of the similarity between exemplars in the multi-
dimensional space. Thus, the model allows fine-grained 

predictions of the probability with which individual items 
are judged as old or new. Indeed, there have been numer-
ous demonstrations of the ability of the model to account 
in quantitative detail for rich sets of old–new recogni-
tion data for individual items (Nosofsky, 1991; Shin & 
Nosofsky, 1992; Zaki & Nosofsky, 2001; for closely re-
lated work, see Kahana & Sekuler, 2002; Lamberts et al., 
2003).

However, most of the successes of the GCM have in-
volved its ability to predict how false alarm rates associ-
ated with new items vary with their similarity to old items. 
A potentially important limitation of the standard model 
is that it fails to account for patterns of results involving 
hit rates to old items. Specifically, because of its summed 
similarity rule, the standard GCM predicts that “typical” 
old items should have higher hit rates than “distinctive” 
old items (Valentine & Ferrara, 1991). Although the con-
structs of “typicality” and “distinctiveness” are open-
ended, the general idea is that a distinctive item is one 
that is relatively isolated in the multidimensional simi-
larity space of studied exemplars, whereas typical items 
lie in more densely clustered locations of the similarity 
space. Thus, the summed similarity associated with typi-
cal items is greater than that associated with distinctive 
items. Therefore, typical old items should give rise to a 
greater degree of familiarity, and so should have higher 
hit rates. A similar qualitative prediction is made by most 
other global-familiarity models of old–new recognition 
(e.g., Gillund & Shiffrin, 1984; Hintzman, 1988).

Much research, however, especially from the face 
recognition literature (Bartlett, Hurry, & Thorley, 1984; 
Light, Kayra-Stuart, & Hollander, 1979; Valentine & Fer-
rara, 1991; Vokey & Read, 1992), suggests that distinctive 
old items have higher hit rates than do typical old items, 
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thereby providing a direct challenge to such models. A 
good example of such a result is found in a face recog-
nition study conducted by Busey and Tunnicliff (1999). 
These researchers had participants provide similarity rat-
ings for a large set of naturalistic male faces, analyzed the 
similarity data by using multidimensional scaling (MDS) 
techniques, and located the faces in a six-dimensional 
psychological space. They then used the scaling solution 
in combination with the GCM to predict participants’ per-
formance in an old–new recognition task involving the 
same set of faces. Busey and Tunnicliff found that distinc-
tive faces—that is, those lying in isolated regions of the 
multidimensional similarity space—gave rise to higher 
hit rates than did typical faces, in direct contrast to the 
predictions of the GCM. However, as acknowledged by 
Busey and Tunnicliff, besides lying in isolated regions of 
the space, many of the distinctive faces also had highly sa-
lient specific features such as beards, whereas faces lying 
in denser, more typical regions did not. Thus, the isola-
tion of the faces along the continuous dimensions of the 
space was confounded with the presence of idiosyncratic 
discrete features.

To investigate further the basis of Busey and Tunnicliff’s 
(1999) results, Zaki and Nosofsky (2001) and Nosofsky 
and Zaki (2003) explicitly manipulated individual-item 
distinctiveness in the domain of color. Unlike face space, 
the underlying dimensional structure of colors is well 
understood, with extensive scaling work indicating that 
colors vary along the three dimensions of hue, satura-
tion, and brightness. Thus, one can explicitly manipulate 
typicality and distinctiveness by varying the location of 
items along these three dimensions. In several old–new 
recognition experiments, Zaki and Nosofsky (2001) and 
Nosofsky and Zaki (2003) tested conditions in which in-
dividual colors were located in either densely populated or 
isolated regions of the continuous-dimension color space. 
Importantly, across conditions, the same colors served as 
either typical or distinctive items, thereby removing any 
stimulus-specific effects from the main pattern of results. 
When distinctiveness was manipulated in this manner, 
these researchers found that hit rates for distinctive old 
items were not greater than for typical old items. In fact, 
the complete set of results was predicted well by the stan-
dard GCM. These studies suggested that mere isolation in 
a continuous-dimension similarity space is not sufficient 
to produce a robust hit rate advantage for distinctive old 
items.

Thus, to pursue further the findings of Busey and Tun-
nicliff (1999), Nosofsky and Zaki (2003) conducted ad-
ditional experiments in the color domain, in which dis-
tinctiveness was manipulated by including idiosyncratic 
discrete features on the studied objects. Specifically, 
they tested designs in which various discrete alphanu-
meric characters were added to a few members of a set 
of continuous-dimension color patches. Under these 
conditions, a strong old-item distinctiveness effect was 
observed: Old items with a discrete distinctive feature 
added to them had significantly higher hit rates than did 
old items without such features. This result is similar to 

the previously discussed results for faces from Busey and 
Tunnicliff. In addition, as discussed more fully later in this 
article, adding the distinctive features to foil items made it 
easier for participants to realize that the foils were new.

To account for the distinctiveness effects, Nosofsky and 
Zaki (2003) developed a modified version of the GCM 
called the hybrid-similarity GCM (HS-GCM; for closely 
related ideas in the domains of similarity and classifica-
tion, see Lee & Navarro, 2002; Navarro & Lee, 2003; 
Verguts, Ameel, & Storms, 2004). This extended version 
of the GCM incorporates the ideas of Tversky’s (1977) 
feature contrast model (FCM) into the MDS framework 
of the traditional GCM. The basic assumption in the FCM 
is that the similarity between two objects is based on mea-
sures of their common and distinctive features. Specifi-
cally, similarity is an increasing function of the measure 
of the objects’ common features and a decreasing function 
of the measures of the objects’ distinctive features. The 
crucially important feature of this model is that, whereas 
standard MDS approaches assume that all items have an 
equal degree of self-similarity, the FCM allows for dif-
fering degrees of self-similarity, with an increase in the 
number of common matching features increasing the mea-
sure of self-similarity. Thus, within the FCM framework, 
an item with a highly salient feature will have a higher 
measure of self-similarity than will one without a highly 
salient feature. In the HS-GCM, the similarity between 
two objects is determined jointly by their distance in a 
continuous-dimension psychological space and by the ex-
tent to which they have matching or mismatching discrete 
features. Within this extended framework, if a distinc-
tive item’s self-similarity is sufficiently high, its summed 
similarity can exceed that of more typical items. This 
increase in summed similarity leads to a corresponding 
increase in familiarity, and results in an increased prob-
ability of judging the distinctive item as old. Indeed, the 
inclusion of the feature-matching mechanism allowed the 
HS-GCM to match the quantitative results of Nosofsky 
and Zaki (2003), whereas the traditional version of GCM 
could not.

Although the results of Nosofsky and Zaki (2003) pro-
vided important preliminary evidence in favor of the new 
model, the stimuli used in their experiments were highly 
artificial (color patches combined with alphanumeric 
markings). Objects in the natural world are rarely that sim-
plistic. Therefore, the main goal of the present research 
was to explore the extent to which Nosofsky and Zaki’s 
results generalize to a more natural domain—namely, that 
of face recognition. Given that it has proven difficult for 
GCM to explain results in this domain in the past (Busey 
& Tunnicliff, 1999; Valentine & Ferrara, 1991), this test 
seems especially appropriate for the HS-GCM.

Because faces are highly variable and complex, we con-
ducted two experiments, one using artificial faces and one 
using natural faces. Artificial faces were used as an ex-
perimental intermediary between the easily manipulated 
domain of color and the much less easily manipulated 
domain of faces. Artificial faces were derived using prin-
cipal components analysis on images from the Facial Rec-
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ognition Technology (FERET) database (Phillips, Moon, 
Rizvi, & Rauss, 2000). Because the similarity of these 
faces on more continuous dimensions could be manipu-
lated, foils of varying degrees of similarity to the distinc-
tive targets could be created (see the Method section), thus 
allowing for direct comparison of the results with those of 
Nosofsky and Zaki (2003).

In a second experiment, we provided further tests of 
the modeling approach in a naturalistic face domain. With 
natural faces, no predetermined continuous dimensions 
exist to explicitly create typical versus distinct items. In 
addition, many potential discrete distinctive features exist 
on natural faces. To create a reasonable but challenging 
test bed for the model, we selected a subset of the nat-
uralistic faces used in Busey and Tunnicliff ’s study. We 
selected the study and test items so as to vary both item 
typicality and the number of faces with highly salient dis-
crete distinctive features. A multidimensional face space 
was constructed by collecting similarity and distinctive-
ness ratings of the faces used in the experiment. We then 
used the derived face space and the distinctiveness ratings 
in combination with the HS-GCM to predict the old–new 
recognition judgments.

Experiment 1

The design of Experiment 1 involved a conceptual 
replication of the earlier study conducted by Nosofsky 
and Zaki (2003), with the main difference that a set of 
artificial faces was used instead of a set of color patches. 
In addition, whereas Nosofsky and Zaki used arbitrary 
alphanumeric characters as discrete distinctive features, 
in the present experiment we used distinctive features 
that are plausibly viewed on faces, such as scars, glasses, 
and so forth. Because the psychological space in which 
faces are embedded is composed of highly complex and 
unspecified dimensions, we could no longer manipulate 
continuous-dimension similarity in the same manner as in 
the Nosofsky and Zaki study. However, we used an alter-
native method that created compact clusters of faces, with 
each cluster lying in a separate region of the face space. 
The key question was the extent to which the pattern of 
results from Nosofsky and Zaki’s design with highly arti-
ficial color/alphanumeric-character stimuli would gener-
alize to this richer, more complex, and more naturalistic 
face domain.

Method
Participants

The participants were 121 undergraduates at Indiana Univer-
sity who received partial credit toward an introductory psychology 
course, as well as the added incentive of a $10 bonus for the top 
three performers in the experiment. The participants were tested in 
groups of 4 to 6.

Stimuli
A total of 72 artificial faces were used in the experiment. The 

faces were constructed by using procedures adapted from O’Toole, 
Abdi, Deffenbacher, and Valentin (1993). First, we aligned 500 faces 
from the FERET database (Phillips et al., 2000) by scaling and ro-

tating each face such that the two eyes and mouth were located in 
common locations, taken from the averages across all faces. The 
faces were then submitted to a principal components analysis that 
preserved 20 eigenvectors. Such eigenvectors are interpreted as pat-
terns of variation that exist in the set of faces. The original faces can 
be reconstructed, with various amounts of error, by weighted linear 
combinations of these eigenvectors. To create clusters of faces, we 
chose reconstructed faces that used the weights corresponding to 
existing faces. The 20 weights placed each face in a 20‑dimensional 
space, and we termed these reconstructed faces the prototype faces. 
A cluster of faces was generated by taking a vector of fixed length 
and rotating it randomly in 20-dimensional space. The tail was 
placed at the coordinates of the prototype face, and the head of the 
vector defined a new face. This procedure was repeated 20 times 
to produce a cluster of faces that had the property that each face 
was approximately equally distant from the prototype. We generated 
200 such clusters and then hand-selected a subset of the constructed 
stimuli for use in the experiment.

The design of the stimulus set is illustrated schematically in Fig-
ure 1. Twelve clusters of faces were selected. Within each cluster, 
there were six similar faces that were roughly equidistant from the 
prototype. The prototypes defining each cluster were quite distant 
from one another. Thus, faces within each cluster were similar, 
whereas faces between clusters were dissimilar. Because we judged 
the prototypes as looking significantly more like “real” faces than 
did the rotated faces, the prototypes were not used in the experiment. 
Three faces from each cluster were randomly assigned to be old 
items (seen during both study and test). The remaining faces in each 
cluster, the foils, were seen only at test. Six clusters were randomly 
assigned to be “marked.” Within each marked cluster, a discrete dis-
tinctive feature was added to one of the old faces. Each of these 
faces (called a distinctive old item) received one of the following 
discrete distinctive features, with each feature being used on ex-
actly one face during study: glasses, headband, mole, scar, forehead 
wrinkles, and deep smile lines around the mouth. During the test 
phase, each discrete feature was also presented on one of the three 
foils from each distinctive target’s cluster. (The same feature was 
used on targets and foils from the same cluster.) We refer to the latter 
items as the high-similarity distinctive foils, because they are highly 
similar to the distinctive target from their own cluster. In addition, 
each discrete feature was also placed on one of the three foils from 
each of the six unmarked clusters. We refer to these items as the low-
similarity distinctive foils, because they came from a cluster separate 
from the distinctive target. Thus, three faces (one distinctive old, one 
high-similarity distinctive foil, and one low-similarity distinctive 
foil) had each of the six distinctive features at test. The remaining 
study items (called typical old items) and foil items (called typical 
foils) were left unmarked, and these items constituted the majority 
of the stimulus set. In total, there were 36 old items (30 typical old 
items and 6 distinctive old items) and 36 new items (24 typical foils, 
6 high-similarity distinctive foils, and 6 low-similarity distinctive 
foils). An example of the actual stimulus materials for one of the 
clusters of faces is shown in Figure 2.

Procedure
Stimulus assignment was randomized for each group of par-

ticipants; specifically, we randomized which clusters were marked 
versus unmarked and which items within clusters were assigned as 
typical old items, distinctive old items, typical foils, high-similarity 
distinctive foils, and low-similarity distinctive foils. During study, 
the participants were shown all of the old items in two blocks, with 
each face shown in a random order once per block. The presentation 
time for each item was 2 sec. The test phase followed immediately 
after the study phase: All 72 items were presented individually in 
random order, and the participants were asked to indicate whether 
each face was old or new by pressing an appropriate key on a key-
pad. Each face remained in view until all of the participants had 
responded. No feedback was provided during the test phase.
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Results

The mean probability of old judgments for each item 
type is reported in Table 1. Not surprisingly, the hit rate for 
typical old items (M 5 .55) was significantly higher than 
the false alarm rate for typical foils (M 5 .44) [t(120) 5 
7.67, p , .001], reflecting the participants’ ability to dis-
criminate old from new items. Note, however, that this dif-
ference between hit and false alarm rates is not very large, 

so old–new discrimination was difficult for the present 
set of artificial faces. The most important result is that 
an old-item distinctiveness effect was observed, with the 
hit rates of distinctive old items (M 5 .73) being signifi-
cantly higher than those for typical old items (M 5 .55) 
[t(120) 5 8.56, p , .001]. As was observed by Nosofsky 
and Zaki (2003), the false alarm rate for typical foils (M 5 
.44) was significantly higher than that for low-similarity 

Marked Cluster Unmarked Cluster

Typical Old

Distinctive OldTypical Foil

High-Similarity
Distinctive Foil

P

Low-Similarity
Distinctive Foil

Typical Old

Typical Foil

P

Figure 1. Schematic design of Experiment 1 showing one “marked” and one “unmarked” cluster. All faces 
within a cluster are statistical distortions of a central prototype (P). Shaded symbols represent old study items, 
and unshaded symbols represent foils. The “1” sign represents a discrete distinctive feature. Each marked cluster 
had one old study item with a discrete distinctive feature (distinctive old item) and one foil with the same discrete 
distinctive feature (high-similarity distinctive foil). Each unmarked cluster included one foil with a discrete distinc-
tive feature (low-similarity distinctive foil). Old study items without discrete distinctive features are termed typical 
old items, whereas foils without discrete distinctive features are termed typical foils.

Prototype

Figure 2. A sample cluster of the artificial faces used in Experiment 1, with the proto- 
type face in the center of the cluster. The face at the lower left of the figure illustrates 
an example in which a distinctive feature has been added (in this case a scar).
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distinctive foils (M 5 .34) [t(120) 5 7.67, p , .001]. 
However, unlike Nosofsky and Zaki (2003), the false 
alarm rate for high-similarity distinctive foils (M 5 .50) 
was significantly higher than that for typical foils (M 5 
.44) [t(120) 5 2.84, p 5 .01], rather than lower. We con-
sider these results more fully in the Theoretical Analysis 
section below.

Theoretical Analysis

According to the HS-GCM, the probability of an old 
response is defined in terms of global familiarity (Fi). The 
probability that item i is judged as old is given by

	 P( | ) ,old i
F

F k
i

i
=

+
	 (1)

where k is a response criterion parameter. The global fa-
miliarity of item i is measured by the summed similarity 
of i to each study exemplar j:

	 F s i, ji = ( )∑ H
j

, 	 (2)

where sH(i, j) is the hybrid similarity of item i to exemplar j. 
The measure of similarity in the hybrid model extends the 
traditional GCM measure by incorporating two new pa-
rameters, C and D, which take into account the presence 
of the discrete distinctive features. In particular, similarity 
in the hybrid model is defined as

	 sH(i, j) 5 C ⋅ D ⋅ s(i, j),	 (3)

where C . 1 is a common-feature match parameter that 
measures the boost in similarity resulting from matching 
discrete features; D (0 , D , 1) is a distinctive-feature 
mismatch parameter that measures the reduction in simi-
larity resulting from mismatching discrete features; and 
s(i, j) is the traditional GCM measure of the similarity of 
items i and j in a continuous-dimension space.

In numerous applications of the GCM, continuous-
dimension scaling solutions are first derived in order to 
compute interexemplar similarities. For simplicity, how-
ever, in the present case we approximate the measure 
of continuous-dimension similarity in terms of two ad-
ditional parameters: sw, the mean similarity of the faces 
within a cluster of faces; and sb, the mean similarity among 

faces across different clusters. Finally, as in the traditional 
GCM, the continuous-dimension similarity of an item to 
itself is always equal to 1. Thus, the familiarity for each 
type of item was defined in terms of the parameters C, 
D, sw, and sb. A similar approach was used by Nosofsky 
and Zaki (2003). So, for example, for the present design 
the summed similarity for distinctive old items would be 
given by

	 Fi 5 C 1 (2 ⋅ sw ⋅ D) 1 (33 ⋅ sb ⋅ D).	 (4)

The term C measures the distinctive old item’s self-similarity; 
the term (2 ⋅ sw ⋅ D) measures the summed similarity of 
the distinctive old item to the two typical old items in its 
cluster; and the term (33 ⋅ sb ⋅ D) measures the summed 
similarity of the distinctive old item to the 33 old items 
from the other 11 clusters. To take another example, the 
summed similarity for high-similarity distinctive foils 
would be given by

	 Fi 5 (sw ⋅ C ) 1 (2 ⋅ sw ⋅ D) 1 (33 ⋅ sb ⋅ D).	 (5)

In this case, the term (sw ⋅ C ) measures the high-similarity 
distinctive foil’s similarity to the distinctive old item from 
within its own cluster; the term (2 ⋅ sw ⋅ D) measures the 
summed similarity of the foil to the two typical old items in 
its cluster; and the term (33 ⋅ sb ⋅ D) measures the summed 
similarity of the foil to the 33 old items from the other 11 
clusters.1 Similar equations can be derived for each of the 
other five item types. Note that the present application of 
HS-GCM involves the use of five free parameters: sw, sb, 
C, D, and k.

We conducted a computer search for the values of the 
five free parameters that provided a maximum-likelihood 
fit to the old–new recognition data. Specifically, we 
searched for the free parameters that maximized the log-
likelihood function

	 ln(L) 5 ∑ln(Ni!) 2 ∑∑ln( fij!) 1 ∑∑ fijln( pij),	 (6)

where Ni is the frequency with which stimulus type i is pre-
sented; fij is the frequency with which participants judge 
item type i as old ( j 5 1) or new ( j 5 2); and pij is the pre-
dicted probability with which item type i is judged as old 
or new. (This likelihood function assumes that the old and 
new judgments for each item type are binomially distrib-
uted and that the individual responses are independent.)

To help evaluate the fits of alternative models with dif-
fering numbers of free parameters, we used the Bayesian 
information criterion (BIC; Wasserman, 2000). The BIC 
fit for a model is given by

	 BIC 5 22ln(L) 1 P ⋅ ln(N ),	 (7)

where ln(L) is the log-likelihood of the data, P is the num-
ber of free parameters in the model, and N is the total 
number of observations in the data set. The model that 
yields a smaller BIC value is the preferred model. In the 
BIC, the term P ⋅ ln(N ) penalizes a model for its num-
ber of free parameters. Thus, if two models yield nearly 
equivalent log-likelihood fits to the data, then the simpler 
model with fewer free parameters is preferred.

Table 1 
Observed and Predicted Old Recognition Probabilities  

for the Seven Item Types in Experiment 1

Region and Item Type  Observed  HS-GCM  GCM

Marked clusters
  Distinctive old .73 .73 .57
  Typical old .54 .54 .58
  Typical foil .44 .43 .43
  High-similarity distinctive foil .50 .50 .41

Unmarked clusters
  Typical old .56 .56 .59
  Typical foil .45 .45 .45
  Low-similarity distinctive foil .34 .34 .39

Note—HS-GCM, hybrid-similarity generalized context model; GCM, 
generalized context model.
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The predicted probabilities from the full version of the 
HS-GCM are shown with the observed probabilities in 
Table 1. The best-fitting values of the free parameters are 
reported in Table 2. The model accounts for 99.9% of the 
variance in the old recognition probabilities and yielded 
BIC 5 98.1. As can be seen from Table 1, the model cap-
tures well the magnitude of the old-item distinctiveness 
effect. Furthermore, an important role of self-match was 
indicated in this experiment, since the common-feature 
parameter took the value C 5 4.12. There was also a rela-
tively large reduction in similarity due to mismatching 
distinctive features, with D 5 .56. Thus, besides providing 
excellent quantitative fits to the data, the resulting param-
eter estimates from the model vary in highly interpretable 
ways.

It is important to note that whereas Nosofsky and Zaki 
(2003) found that the false alarm rate for high-similarity 
distinctive foils was significantly lower than for typical 
foils, the opposite pattern was observed in the present 
experiment (see Table 1). Furthermore, the HS-GCM ac-
counts for both patterns of findings. The explanation in 
terms of the model is as follows: When a distinctive dis-
crete feature is added to a foil, it has two competing influ-
ences. First, it results in a boost to overall summed simi-
larity, because the high-similarity distinctive foil matches 
the distinctive target on this salient discrete feature. This 
boost is captured by the C parameter in the term (sw ⋅ C ) 
in Equation 5. Second, it results in a reduction to overall 
summed similarity, because that foil now has a greater 
mismatch to all of the other old targets in the study list. 
This reduction is captured by the D parameter in the terms 
(2 ⋅ sw ⋅ D) 1 (33 ⋅ sb ⋅ D) in Equation 5. The effect on 
the false alarm rate thus depends on the outcome of this 
competition. In Nosofsky and Zaki’s (2003) experiment 
with color patch stimuli, within-cluster similarity (sw) was 
relatively low, so the boost to summed similarity (sw ⋅ C ) 
did not overcome the reduction. By contrast, in the present 
experiment, within-cluster similarity was relatively high, 
which is reflected by the difficulty that participants had in 

discriminating new foils from old targets (compare typical 
foils vs. typical old items in Table 1). Thus, the boost to 
summed similarity greatly outweighed the reduction, and 
there was a corresponding increase in false alarm rates. 
As impressive further support for the model, note that it 
simultaneously predicts the boost in false alarm rates for 
the high-similarity distinctive foils, as well as the reduc-
tion in false alarm rates for the low-similarity distinctive 
foils. In a nutshell, the effect of adding distinctive discrete 
features on false alarm rates depends on parametric varia-
tions in similarity within the stimulus set, and these effects 
are well captured by the HS-GCM.

Finally, as a source of comparison, we also fitted to the 
old–new recognition data a special case of the HS‑GCM 
in which the common-feature match parameter was held 
fixed at C 5 1. This special-case model is essentially the 
standard GCM—in other words, a version of the exem-
plar model in which all self-similarities are equal and held 
fixed at 1. The predicted probabilities from the standard 
GCM are shown in Table 1, with the best-fitting param-
eters reported in Table 2. As can be seen, the standard 
model fails dramatically to predict the old-item distinc-
tiveness effect. It also fails to predict the increase in false 
alarms associated with the high-similarity distinctive foils. 
The standard model yielded BIC 5 232.3, which is a con-
siderably worse fit than was yielded by the full HS‑GCM 
(BIC 5 98.1). Thus, the extended model captures funda-
mental psychological phenomena that the standard GCM 
fails to capture.

Discussion

The results from Experiment 1 provide a conceptual 
replication of the earlier results reported by Nosofsky and 
Zaki (2003). When distinctive discrete features are added 
to individual stimuli embedded in a continuous-dimension 
similarity space, a robust old-item distinctiveness effect 
is observed. The standard GCM fails to account for the 
effect, whereas an extended hybrid-similarity version that 
makes allowance for the role of discrete-feature matching 
performs extremely well. Furthermore, beyond account-
ing for the old-item distinctiveness effect, the hybrid-
similarity model also captures the effect of the discrete 
features on false alarm rates for both high-similarity and 
low-similarity foils. Finally, the model performs well in a 
fairly complex and naturalistic domain—namely, that of 
face recognition.

One question that arises is whether or not the results 
can be explained in terms of differential encoding and 
memory strengths of the distinctive items rather than in 
terms of differences in self-similarity. For example, dur-
ing study, the distinctive items may have captured the ob-
servers’ attention, resulting in stronger memory traces in 
comparison with the typical old items (cf. Malmberg & 
Nelson, 2003). The previous work conducted by Nosofsky 
and Zaki (2003), however, argued against such an inter-
pretation. In that work, conditions were included in which 
the frequency with which the distinctive features appeared 
on foil items at the time of test was varied. In conditions 
in which the distinctive features rarely appeared on the 

Table 2 
Best-Fitting Parameters for the HS-GCM and GCM  

in Experiments 1 and 2

Experiment 1 Experiment 2

 Parameter  HS-GCM  GCM  HS-GCM  GCM  

C 4.12 1.00 (set) – –
D   .56   .81 – –
sw   .27   .30 – –
sb   .02   .00 – –
α – –   .20 –
β – –   .12 –
γ – –   .14 –
k 1.75 1.12 0.56 0.22
κ – – 1.24 2.71

Note—HS-GCM, hybrid-similarity generalized context model; GCM, 
generalized context model; C, common discrete feature match; D, dis-
tinctive discrete feature mismatch; sw, mean similarity of the faces within 
a cluster of faces; sb, mean similarity among faces in different clusters 
of faces; α, β, γ, distinctive-feature weight parameters; k, response cri-
terion; κ, overall sensitivity.
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foils, the presence of a distinctive feature was highly di-
agnostic that the test item was old. By contrast, in condi-
tions in which the distinctive features occurred with high 
frequency on the foils, the presence of a distinctive fea-
ture provided weak evidence that the test item was old. 
Observers were apparently sensitive to this manipulation, 
because the common-feature match parameter took on 
very high values in the conditions in which the distinc-
tive features were diagnostic, but very low values when 
the distinctive features were not diagnostic. The memory 
strength hypothesis fails to explain this pattern of results, 
because any differential encoding of the distinctive items 
occurs at time of study, prior to the presentation of the 
test items. By contrast, the pattern of results is explained 
by the hypothesis that at time of test, participants adjust 
the weight assigned to common-feature matches in accord 
with the judged diagnosticity of the discrete distinctive 
features.

Experiment 2

The HS-GCM accounts well for the recognition data 
from artificial faces, in which the typicality of the faces 
within and between clusters could be experimentally con-
trolled. Yet, though the artificial faces were far more com-
plex than the color patches used by Nosofsky and Zaki 
(2003), they still lacked many of the properties that natu-
ral faces possess. Most critically, in our second experiment 
we were interested in testing for a role of discrete-feature 
structure as it might occur in the natural world, rather than 
in explicitly introducing such structure artificially. There-
fore, our next step was to explore the extent to which our 
previous results generalize to the more complex domain 
of natural faces.

As a challenging test bed for the model, we used as 
stimuli a 40-face subset of the 104 naturalistic faces that 
had been used by Busey and Tunnicliff (1999). (Recall 
that the predictions from the traditional GCM had been 
strongly contradicted in this previous study.) We tested 
three conditions in the present experiment, all involving 
the same set of naturalistic faces. In one condition, we 
obtained similarity judgments of the faces to generate an 
MDS solution. In a second condition, a separate group 
of participants engaged in an old–new recognition task. 
Following this task, we tested a third condition in which 
the participants provided individual-feature distinctive-
ness ratings of the faces. These ratings were used to ob-
tain information concerning the discrete-feature structure 
associated with the set of faces. The goal was to use the 
derived MDS solution together with the distinctiveness 
ratings to test the HS-GCM on its ability to predict the 
old–new recognition judgments.

We chose the subset of 40 faces with the aim of tapping 
into both the continuous-dimension and discrete-feature 
components of similarity of the HS-GCM. One group of 
faces was chosen with the expectation that the members 
would cluster together in the MDS solution, making them 
typical items. Another group was chosen with the expecta-
tion that its members would lie in more isolated portions 

of the MDS solution, but such that the faces did not have 
any highly salient discrete features. We refer to this group 
as the isolated faces. Finally, a third group was chosen 
such that its members were not only expected to lie in 
isolated portions of the MDS solution, but also possessed 
unique and highly salient discrete features. We refer to this 
group as the distinctive faces.

The central prediction from the HS-GCM is that there 
will be marked increases in hit rates for the old distinctive 
faces as a result of feature matching, whereas foils with 
the discrete features will show marked decreases in false 
alarm rates because of feature mismatching. It is more 
difficult to make a priori predictions comparing hit rates 
of the typical old and isolated old faces. On the one hand, 
because typical faces lie in dense regions of the similarity 
space, they should give rise to higher levels of summed 
similarity. On the other hand, in this naturalistic domain, 
it is impossible to ensure that observers will not notice any 
idiosyncratic discrete features on the isolated faces, de-
spite the experimenters’ judgments that none were highly 
salient. And to the extent that such idiosyncratic discrete 
features are more likely to exist on the isolated faces than 
on the typical ones, hit rates for the isolated faces may be 
slightly elevated as well.

Method
Participants

The participants were 159 undergraduates at Indiana University 
taking introductory psychology courses. They received course credit 
for their participation, and an additional $3 performance bonus was 
also offered. There were 72 participants in the similarity ratings con-
dition and 87 in the old–new recognition and distinctiveness ratings 
conditions. Because of poor performance on the old–new recogni-
tion task, the data of 4 participants were not included in the analyses. 
All participants were tested individually.

Stimuli
Busey and Tunnicliff (1999) conducted experiments using pic-

tures of 104 bald men (Kayser, 1985) with similar expressions, taken 
under similar lighting conditions. The 104 pictures included men of 
various races as well as morphs of various pairs of faces. In choosing 
the present 40-face subset from Busey and Tunnicliff ’s stimuli, we 
used only Caucasians. In addition, because morph faces have been 
shown to have artifacts that may influence recognition judgments 
(see, e.g., Busey, 1998; Zaki & Nosofsky, 2001), the morphs were 
not included in the set.

As described previously, we chose the 40 faces with the aim of 
creating three main groups: typical, isolated, and distinctive. The 
results from the distinctiveness-ratings condition were used to con-
firm our judgments about the group assignments. There were a total 
of 16 typical faces, 16 isolated faces, and 8 distinctive faces.2 Half 
of the faces in each group were randomly designated as old items, 
with the other half serving as foils during test. Because our goal in 
this experiment was the modeling of individual-item performance 
(see the Theoretical Analysis section), the old/foil designation of 
each face was held constant across participants. Thus, in total there 
were 20 old items (8 typical old, 8 isolated old, and 4 distinctive old) 
and 20 new items (8 typical foils, 8 isolated foils, and 4 distinctive 
foils). Regarding the distinctive-face groups, for purposes of sim-
plicity in our subsequent modeling, we tried to select items in which 
a different type of discrete feature was associated with each face. 
The resulting salient discrete features were bushy beard, long curled 
mustache, trimmed gray goatee, missing eyebrows, highly wrinkled 
face, extremely round face, forehead scar, and prominent cheeks.3
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Procedure
Similarity judgment condition. Each participant was shown half 

of the 780 possible pairs of the 40 faces in a side-by-side presentation 
and asked to judge how similar the two faces were on a scale of 1 (not 
very similar) to 9 (very similar). Responses were made by clicking on 
the appropriate rating using a mouse. After rating the current pair of 
faces, the participants could bring up a new pair of faces by pressing 
a Finished button with the mouse. The pairs of faces judged by each 
participant were chosen randomly. The left–right placement of the 
faces on the screen was also chosen randomly.

Old–new recognition condition. During study, these partici-
pants were shown all 20 old faces in a random order in two blocks, 
such that each face was shown once per block. The presentation time 
for each face was 4 sec. The test phase immediately followed study. 
During the test phase, an individual face was presented for 4 sec, 
followed by a response screen on which the participants were asked 
to indicate whether that face was old or new. They also indicated how 
confident they were about their judgment on a scale of 1 (not very 
confident) to 9 (very confident). The test faces were presented in a 
random order for each individual participant.

Distinctiveness ratings condition. Following the old–new rec-
ognition task, the participants were asked to rate the extent to which 
each of the 40 faces had highly distinctive discrete features. The 
faces were presented in a random order for each participant. After 
an individual face was presented for 4 sec, the participants were 
asked to give a rating on a scale of 1 (not very distinctive features) to 
9 (very distinctive features) by clicking on the appropriate response 
with the mouse. In addition to rating each face, they were also asked 
to indicate which particular feature or features were distinctive. They 
could indicate between 0 and 5 features using a drop-down menu 
that listed 16 features (see Table 3), and they could also choose the 
“Other” category, which allowed them to write in their own feature. 
The 16 listed features were compiled from the responses given dur-
ing a previous unpublished experiment from Busey and Tunnicliff 
(1999) that used all 104 faces.

Results

Similarity Ratings
Each pairing of faces was rated by an average of 35.5 

participants. We analyzed the matrix of averaged ratings 
by using the standard Euclidean model from the ALSCAL 
statistical package. A six-dimensional MDS solution had 
STRESS 5 .096 and accounted for 86.9% of the variance 
in the averaged ratings. We used this MDS solution in 
combination with the HS-GCM in our subsequent model-
ing analyses. The raw similarity ratings and MDS solution 
for the faces are available from the authors upon request.

In general, the typical faces were located in central por-
tions of the MDS solution, the isolated faces were located in 
intermediate regions, and the distinctive faces were located 

toward the periphery. The average distance of each type of 
face to other members of the set was 3.16, 3.38, and 3.83, 
for the typical, isolated, and distinctive faces, respectively.

Distinctiveness Ratings
The mean distinctiveness rating for each individual face 

is reported in Table 4, with the mean for each item type 
reported in Table 5. Mean distinctiveness ratings were sig-
nificantly higher for distinctive old items (M 5 7.59) than 
for isolated old items (M 5 5.99) [t(82) 5 18.47, p , .001] 
and for isolated old items than for typical old items (M 5 
4.96) [t(82) 5 11.29, p , .001]. Similarly, mean distinc-
tiveness ratings for distinctive foils (M 5 7.78) were sig-
nificantly higher than those for isolated foils (M 5 6.03) 
[t(82) 5 13.64, p , .001], and distinctiveness ratings for 
isolated foils were significantly higher than those for typi-
cal foils (M 5 4.66) [t(82) 5 14.21, p , .001]. This pattern 
of results provides a manipulation check on the groups of 
faces that we formed. The faces that we judged to have the 
most salient distinctive features (groups distinctive old and 
distinctive foil) were given the highest distinctiveness rat-
ings by the experimental participants. Note, however, that 
the isolated faces were also judged to have more distinctive 
individual features than did the typical faces, although the 
magnitude of these ratings was not nearly as high as it was 
for the distinctive-face group. As discussed earlier, this re-
sult was not entirely unexpected, given the complexity of 
the natural-face domain, and needed to be incorporated in 
our subsequent modeling of the old–new recognition data.

Old–New Recognition
The observed proportion of old recognition judgments 

for each individual face is reported in Table 4. The mean 
probabilities of old judgments for the main item types 
are reported in Table 5. The mean recognition probability 
for the distinctive old items (M 5 .89) was significantly 
higher than for either the isolated old items (M 5 .82) 
[t(82) 5 3.16, p 5 .002] or the typical old items (M 5 
.82) [t(82) 5 3.46, p 5 .001]. Recognition probabilities 
for the typical old and isolated old items did not differ 
significantly [t(82) 5 0.235, p 5 .82]. The false alarm 
rate for distinctive foils (M 5 .01) was significantly lower 
than for either typical foils (M 5 .17) [t(82) 5 8.76, p , 
.001] or isolated foils (M 5 .10) [t(82) 5 6.06, p , .001]. 
In addition, the false alarm rate for isolated foils was sig-
nificantly lower than for typical foils [t(82) 5 4.25, p , 
.001]. The increased hit rate associated with the distinctive 
old items is consistent with the general predictions from 
the HS-GCM. In addition, the decreased false alarm rates 
associated with the isolated foils and distinctive foils are 
straightforward qualitative predictions from the model. 
We now turn to the formal modeling analyses to test the 
extent to which the HS-GCM can account quantitatively 
for the details of the old–new recognition data.

Theoretical Analysis

Our central goal was to use the HS-GCM to predict 
quantitatively the recognition probabilities associated 

Table 3 
The 16 Features Provided to Participants During the  

Rating Portion of Experiment 2

 Feature  Feature  

Beard Chin
Mustache Ears
Nose Face shape
Mouth Head shape
Lips Forehead
Eyes Wrinkles
Eyebrows Scar

 Cheeks  Mole  
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with each of the individual faces. We should make clear at 
the outset that we view this goal of predicting recognition 
probabilities at the individual-item level to be a highly 
ambitious one in this natural-face domain. Although ex-
emplar recognition models have performed admirably in 
more simplified domains in which the underlying dimen-
sional structure of the objects is tightly controlled, such 
control is not possible in the present domain. Therefore, it 
is unrealistic to expect the model to perform with the same 
precision as in previous tests.

Note as well that we are unable to provide a rigorous 
application of the model, because scaling techniques are 
not yet available for cleanly identifying the continuous-
dimension and discrete-feature components of these 
complex natural-face representations. (As described in 
our General Discussion section, however, Navarro and 

Lee [2003] have achieved some promising developments 
along these lines.) Nevertheless, our idea was to use the 
obtained similarity and distinctiveness ratings as vehicles 
for approximating the model’s predictions. Specifically, 
we used the derived MDS solution for the faces to ap-
proximate the continuous-dimension distance component 
in the model. Furthermore, as will be seen, as an approxi-
mation of incorporating the discrete-feature structure of 
the faces, we made use of the individual-feature distinc-
tiveness ratings provided by the participants.

To begin, the continuous-dimension Euclidean distance 
d(i, j) between each pair of faces i and j was computed 
from the six-dimensional scaling solution that we derived 
from the similarity judgments. The hybrid distance d

~
(i, j) 

between each pair of faces was then computed by com-
bining the continuous-distance measure with information 

Table 4 
Observed and Predicted Old Recognition Probabilities and 

Distinctiveness Ratings for the 40 Faces in Experiment 2

Observed Distinctiveness
Face Type  Face  Probability  HS-GCM  GCM  Rating

Typical old 1 .93 .80 .83 4.49
2 .90 .81 .82 4.73
3 .86 .81 .83 4.57
4 .86 .82 .82 5.37
5 .84 .81 .82 4.77
6 .83 .81 .82 4.88
7 .76 .82 .82 5.41
8 .58 .82 .82 5.42

Typical foil 1 .30 .31 .44 4.19
2 .30 .15 .16 5.45
3 .22 .18 .25 3.82
4 .18 .16 .14 4.96
5 .18 .15 .10 4.41
6 .07 .15 .06 4.27
7 .06 .14 .18 5.27
8 .06 .06 .02 4.92

Isolated old 1 .95 .85 .82 6.40
2 .89 .85 .82 6.41
3 .88 .85 .82 6.49
4 .83 .85 .82 6.65
5 .82 .83 .83 5.51
6 .78 .82 .82 5.41
7 .72 .83 .82 5.55
8 .71 .83 .82 5.48

Isolated foil 1 .23 .30 .42 5.07
2 .23 .10 .08 6.34
3 .10 .04 .04 5.95
4 .06 .09 .10 6.25
5 .06 .08 .04 6.16
6 .06 .05 .02 5.86
7 .05 .14 .18 6.07
8 .05 .08 .12 6.51

Distinctive old 1 .95 .87 .82 7.64
2 .92 .86 .82 7.23
3 .86 .87 .82 7.40
4 .83 .88 .82 8.08

Distinctive foil 1 .02 .03 .07 8.42
2 .01 .02 .03 7.84
3 .01 .02 .00 8.01
4 .00 .03 .06 6.84

Note—HS-GCM, hybrid-similarity generalized context model; GCM, generalized 
context model.
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provided from the individual-feature distinctiveness rat-
ings. Specifically, the hybrid distance between two dis-
tinct faces i and j was defined as

	 d
~
(i, j) 5 d(i, j) 1 a ⋅ (Di 1 Dj) 2 b ⋅ d(i, j) ⋅ (Di 1 Dj),	 (8)

where d(i, j) is the continuous-dimension component; Di 
is the distinctiveness rating for face i; and α and β are 
freely estimated weight parameters that reflect the rela-
tive contributions of the discrete distinctive features to 
the total distance calculation. Finally, δ(i, j) is an indicator 
variable set equal to 1 when the most salient rated feature 
of face i is the same as the most salient feature of face j, 
and set equal to 0 otherwise. The basic assumption under-
lying Equation 8 is that the distinctiveness ratings for the 
individual discrete features are proportional to the fea-
tures’ true “psychological salience.” These salience values 
add to the total hybrid distance between the two faces [i.e., 
the term α(Di 1 Dj)]. The final term [βδ(i, j)(Di 1 Dj)] is 
intended as a correction to this added psychological dis-
tance: If two faces share a similar salient discrete feature, 
the added distance is not as great as when the discrete 
features are quite different from one another.

As is assumed in the traditional GCM, the hybrid simi-
larity between faces i and j is assumed to be an exponen-
tial decay function of their distance,

	 sH(i, j) 5 exp[2k ⋅ d~(i, j)],	 (9)

where κ is an overall sensitivity parameter that measures 
the rate at which similarity declines with increasing dis-
tance. In addition, the similarity of a face to itself is de-
fined as

	 sH(i, j) 5 exp(γ ⋅ Di),	 (10)

where γ . 0 is a freely estimated weight parameter that 
measures the importance of common-feature matches.

Note that Equations 8–10 yield the same functional 
form for defining hybrid similarity as was introduced in 
Experiment 1 (Equation 3), except that allowance is now 
made for the idea that different discrete features may have 
differing degrees of psychological salience.4 In all other 
respects, the HS-GCM is the same as the version discussed 
earlier in this article, with the overall familiarity of each 
face defined by Equation 2, and the old recognition prob-
ability for each face given by Equation 1.

In the present context, the HS-GCM has five free pa-
rameters: the overall sensitivity parameter κ, response 
criterion parameter k, and hybrid-distance weight param-
eters α, β, and γ. In the special case in which the hybrid-
distance weight parameters are set equal to 0, the model 
reduces to the traditional GCM. We conducted a computer 
search for the values of the free parameters that provided 
a maximum-likelihood fit to the individual-face recogni-
tion data and used the BIC statistic to evaluate alterna-
tive versions of the model with differing numbers of free 
parameters.

The predicted recognition probabilities for each indi-
vidual face from the full version of the HS-GCM are re-
ported along with the observed data in Table 4, with the 
best-fitting parameters reported in Table 2. The model 
provides a fair fit to the individual-face data, accounting 
for 96.0% of the response variance in the old recognition 
probabilities and yielding BIC 5 335.15. The predictions 
of the main trends are reported along with the observed 
data in Table 5. As can be seen, the model accounts reason-
ably well for the magnitude of the old-item distinctiveness 
effect (i.e., the advantage in hit rates for the distinctive old 
items in comparison with the isolated old and typical old 
items). Likewise, the model predicts extremely accurately 
the decrease in false alarm rates as the discrete features on 
the foils become more salient.

Nevertheless, despite accounting for the main trends, 
it is important to acknowledge that there is still a long 
way to go with regard to accounting for the fine-grained 
structure in the data, especially with respect to recogni-
tion performance of the typical old items. For example, 
as reported in Table 4, the observed hit rates associated 
with the typical old items vary from as low as .58 to as 
high as .93, whereas the model’s predictions for this class 
of items always hover between .80 and .82. It remains to 
be seen whether more sophisticated similarity-scaling ap-
proaches or alternative recognition models may improve 
on this level of prediction. We consider some possibilities 
along these lines in the General Discussion section.

As a source of comparison, we also fitted the traditional 
GCM to the data. The predictions of the main trends are 
shown along with the observed data in Table 5. In a nut-
shell, the traditional GCM fails to predict the old-item dis-
tinctiveness effect. Not surprisingly, the model yielded a 
fit to the individual-face data (BIC 5 376.8) that was far 
worse than that of the HS-GCM.

In further explorations of the model, we considered the 
role of the different discrete-feature weight parameters (α, 
β, and γ) in Equations 8 and 10. Although including each 
parameter always led to an improvement in the BIC fit, the 
self-similarity γ parameter played the most important role, 
whereas the “correction” parameter β played a relatively 
minor role. At present, one of the major limitations of the 
modeling is that we do not have a good approach for rep-
resenting similarity relations among the discrete features 
themselves. Thus, if two faces have distinctive eyes, we 
are unable to distinguish situations in which those eyes are 
themselves similar or dissimilar to one another. Future re-
search is needed to develop more sophisticated modeling 

Table 5 
Average Observed and Predicted Old Recognition Probabilities 

and Observed Distinctiveness Ratings  
for the Six Item Types in Experiment 2

Observed Distinctiveness
Item Type  Probability  HS-GCM  GCM  Rating

Typical old .82 .81 .82 4.96
Typical foil .17 .16 .17 4.66
Isolated old .82 .84 .82 5.99
Isolated foil .10 .11 .12 6.03
Distinctive old .89 .87 .82 7.59
Distinctive foil .01 .02 .04 7.78

Note—HS-GCM, hybrid-similarity generalized context model; GCM, 
generalized context model.
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approaches for taking into account this more fine-grained 
similarity structure.

Finally, we also considered the HS-GCM’s predictions 
by using an alternative approach to combining the similar-
ity and distinctiveness ratings of the faces. In this alterna-
tive approach, we fitted the similarity data themselves in 
terms of the hybrid-distance model given by Equation 8. 
By contrast, in the previous approach, the distinctiveness 
ratings were not included when fitting the MDS model to 
the similarity data. Thus, the “true” MDS solution could 
have been distorted because it was trying to capture the in-
fluence of the discrete-feature structure of the faces on the 
similarity judgments. The alternative approach, however, 
led to fits to both the similarity and the old–new recogni-
tion data that were virtually identical to the ones we have 
already reported. Thus, because none of our conclusions 
changed, we do not report the detailed results from this 
alternative mode of analysis.

General Discussion

A fundamental challenge confronting global-familiarity 
models of recognition is the presence of old-item distinc-
tiveness effects. Intuitively, because distinctive items lie 
in isolated regions of the psychological similarity space, 
their global familiarity would seem to be less than that of 
typical items that lie in dense regions. Thus, hit rates as-
sociated with distinctive items should be less than hit rates 
associated with typical items. However, the opposite result 
often seems to be observed, especially in the domain of 
face recognition (Busey & Tunnicliff, 1999; Valentine & 
Ferrara, 1991).

Old-item distinctiveness effects are far from univer-
sal, however, and seem to depend on the prevailing ex-
perimental conditions. For example, mere isolation in a 
continuous-dimension similarity space does not appear 
to be a sufficient condition for the emergence of the ef-
fects (see, e.g., Nosofsky & Zaki, 2003; Zaki & Nosofsky, 
2001; see also Shiffrin, Huber, & Marinelli, 1995). In-
stead, Nosofsky and Zaki’s (2003) research suggests that 
the presence of discrete individuating features is crucial.

To account for this pattern of results, Nosofsky and 
Zaki (2003) proposed a hybrid-similarity exemplar model 
of old–new recognition. In the hybrid model, similarity 
is a joint function of the distance between objects in a 
continuous-dimension space and of the extent to which 
the objects have matching and mismatching discrete 
features. The key to the modeling approach is that the 
feature-matching component makes allowance for differ-
ential self-similarities among objects. A distinctive object 
with highly salient discrete features has a greater degree 
of self-match than do typical objects without such fea-
tures. Thus, the model accounts jointly for the findings 
that mere isolation in a continuous-dimension space does 
not give rise to robust old-item distinctiveness effects, 
whereas distinctiveness arising from the presence of dis-
crete salient features does give rise to such effects.

Nosofsky and Zaki (2003) demonstrated preliminary 
support for the modeling ideas in a series of experiments 

in which distinctive alphanumeric characters were added 
to a set of continuous-dimension color patches. Besides 
accounting for the magnitude of the old-item distinctive-
ness effects across conditions, the model was also able 
to account for an intricate set of findings involving false 
alarm rates to foils that possessed distinctive features.

Nevertheless, this preliminary support for the model 
was obtained under exceedingly artificial conditions with 
highly impoverished stimuli. The central goal of the pres-
ent research was to begin an exploration of the modeling 
ideas in the much more complex domain of face recogni-
tion. This domain seems especially appropriate in view 
of the fact that past findings from the face recognition 
literature have posed strong challenges to exemplar fa-
miliarity models.

In Experiment 1 of the present study, we used as stimuli 
a set of artificial faces to produce clusters with a high 
degree of within-cluster similarity and a low degree of 
between-cluster similarity. Furthermore, in analogy with 
the experiments conducted by Nosofsky and Zaki (2003), 
we manipulated whether or not old targets, high-similarity 
foils, and low-similarity foils contained discrete individu-
ating features. Unlike Nosofsky and Zaki, we used types 
of discrete features that would plausibly occur on faces 
in the natural world (e.g., moles, scars, glasses, etc.). 
Despite moving to this much more complex domain, the 
discrete-feature manipulations led to much the same pat-
tern of old–new recognition results as had been observed 
by Nosofsky and Zaki: A robust old-item distinctiveness 
effect was observed, and it became far easier to correctly 
reject low-similarity foils when they included a distinc-
tive feature. In the present design, however, we found that 
high-similarity foils that included distinctive features had 
higher false alarm rates than did typical foils, a result that 
differed from those previously reported by Nosofsky and 
Zaki. However, the hybrid-similarity exemplar model ac-
counted in quantitative detail for all of these effects. As we 
explained in detail earlier in this article, according to the 
hybrid model, adding discrete features to objects results 
in competing influences on overall summed similarity and 
global familiarity. The final outcome of the competition 
depends on various prevailing experimental conditions, 
including parametric variations in similarity among tar-
gets and foils, as well as the salience of the individuating 
discrete features themselves. In our view, it is a credit to 
the model that it can account for these intricate patterns of 
findings involving the effects of discrete distinctive fea-
tures on false alarm rates.

In the present Experiment 2, we began explorations of 
the model in a still more challenging domain—namely, 
the old–new recognition of a set of naturalistic faces. In 
this domain, we no longer had strong control over within- 
and between-cluster similarity among faces, nor over the 
presence of discrete individuating features. Instead, we 
relied on observers’ ratings of similarity and distinctive-
ness to provide approximate information along these lines. 
We then combined the ratings with the hybrid-similarity 
exemplar model to generate predictions of old–new rec-
ognition performance. The model yielded a fair quantita-
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tive account of the probability with which the participants 
judged each individual face to be old or new. Furthermore, 
it accounted for the main qualitative finding that those 
faces judged to have the most salient discrete distinctive 
features had both the highest hit rates and the lowest false 
alarm rates.

In previous work, Dailey, Cottrell, and Busey (1998, 
1999) also conducted modeling explorations of the natu-
ralistic face recognition data from Busey and Tunnicliff 
(1999). They explored a variety of different combinations 
of modeling and similarity representation assumptions. 
The most successful was a combination of a kernel density 
estimation model with an MDS similarity representation. 
Although a detailed discussion goes beyond the scope of 
this article, the basic idea in the kernel density estimation 
model is that an aggregate “probability density” surface is 
built up over the multidimensional face space by summing 
the probability densities associated with each individual 
studied face. As noted by Dailey et al. (1999), the baseline 
version of this model is essentially the same as the GCM, 
with probability densities taking the place of individual-
exemplar similarity gradients (see Ashby & Alfonso-
Reese, 1995, for a discussion showing formal identities 
between kernel density estimation and summed-similarity 
exemplar models). However, Dailey et al. (1999) made 
special provision for old-item distinctiveness effects in 
the recognition data by assuming that items in isolated 
regions of the MDS solution had larger kernels. Thus, the 
aggregated probability density for distinctive faces could 
exceed that of more typical ones. In our view, an impor-
tant limitation of this modeling approach is that it does 
not account for the findings of Zaki and Nosofsky (2001) 
and Nosofsky and Zaki (2003) that mere isolation in a 
continuous-dimension similarity space does not appear to 
yield robust old-item distinctiveness effects. Instead, the 
presence of salient discrete individuating features seems 
to be crucial. The hybrid-similarity exemplar model pro-
vides a natural account of such effects in terms of the 
discrete-feature matching mechanism providing boosts to 
self-similarity.

Clearly, future research is needed to improve upon the 
applications of the hybrid-similarity exemplar model in 
the domain of naturalistic face recognition. Although the 
model captured the broad qualitative pattern of results 
involving the different types of faces (distinctive, iso-
lated, and typical), and provided a good account of the 
false alarm rates associated with the new faces, it failed 
to account for the hit rate variability associated with the 
subset of typical old faces. There are several likely reasons 
for this limitation. First, in the naturalistic face domain, 
there are likely to be various factors that influence recog-
nition beyond the variables considered here. For example, 
a particular face might remind observers of some famous 
real-world face, which would exert a powerful influence 
on recognition judgments. Or, different emotional expres-
sions might capture different degrees of attention, result-
ing in differential encodings of the individual faces. The 
present modeling approach would need to be extended to 
account for the effects of these complex variables.

Second, although it was a reasonable method for getting 
started, our view is that the use of direct individual-feature 
distinctiveness ratings for identifying discrete-feature 
structure is inadequate. For example, the underlying di-
mensional structure of a set of objects is almost certainly 
not fully accessible to consciousness, and people’s verbal 
reports can provide at best an incomplete approximation 
of this structure. Likewise, as discussed earlier in our ar-
ticle, the technique is inadequate for representing the fine-
grained similarity structure among the distinctive features 
themselves.

A preferable method, we believe, would involve the ap-
plication of similarity-scaling techniques for extracting 
such structure. A highly promising direction might involve 
the application of a newly developed hybrid-similarity 
scaling algorithm proposed by Navarro and Lee (2003). 
The aim of this algorithm is to jointly extract continuous-
dimension and discrete-feature structure through the anal-
ysis of matrices of similarity data. A good deal of work, 
however, is still needed for testing and fine-tuning the 
algorithm. With continued development, it might be pos-
sible to derive a hybrid-similarity scaling solution for a set 
of naturalistic faces and use this solution in combination 
with the exemplar model for predicting face recognition.

In sum, the central finding from this research is that 
the presence of discrete distinctive features on faces gives 
rise to robust old-item distinctiveness effects, such that hit 
rates associated with the distinctive faces greatly exceed 
hit rates associated with more typical faces. This result 
poses a challenge to standard global-familiarity models 
of recognition, because the global activation or similarity 
produced by a typical face should presumably be greater 
than that produced by a distinctive one. The solution 
proposed within the framework of the hybrid-similarity 
GCM, however, is that the self-match or self-similarity of 
a distinctive face is far greater than that associated with 
typical ones. If this self-match is sufficiently large, the 
global activation produced by a distinctive face can ex-
ceed that produced by typical faces. We obtained support 
for this interpretation in terms of formal quantitative fits 
of the model, both in a highly controlled experiment that 
involved manipulation of discrete-feature structure on a 
set of artificial faces and in an exploratory investigation 
involving a more complex set of naturalistic faces. Future 
research is needed to provide more rigorous tests of the 
modeling approach in the naturalistic face domain.
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NOTES

1. The last term (33 ⋅ sb ⋅ D) comes from two sources: (5 ⋅ sb ⋅ D) 
measures the summed similarity of the high-similarity distinctive 
foil to the 5 distinctive old items from the other 5 marked clusters, 
and the remainder (28 ⋅ sb ⋅ D) measures the summed similarity of 
the high-similarity distinctive foil to the 28 typical old items from 
the other 11 clusters (2 typical old items from each of the 5 marked 
clusters and 3 from each of the 6 unmarked clusters). In this model-
ing approach, the parameter D represents both the mismatch be-
tween the presence of a distinctive feature and its absence, as well as 
the mismatch between two different distinctive features.

2. Based on the results of the distinctiveness ratings obtained in this 
experiment, two faces were reassigned from the distinctive group to 
the isolated group, and two from the isolated group were reassigned to 
the distinctive group (one old item and one foil from each group).

3. Of course, the extent to which a particular feature operates as a 
discrete distinctive feature will depend on the context of other items 
that are presented in the experiment. Thus, if all faces have mus-
taches that vary continuously in color, thickness, and so forth, then 
the mere presence of a mustache would no longer constitute a dis-
crete distinctive feature. In the present case, we judged the discrete 
distinctive features to be either “present” or “absent” and not to vary 
continuously across other items in the set.

4. By definition, from Equations 8 and 9,
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which is in the same form as Equation 3. In the present case, s(i, j) 5 
exp[2κ ⋅ d(i, j)] is the continuous component, Dij 5 exp[2κ ⋅ α ⋅ 
(Di 1 Dj)] is the distinctive-feature mismatch component, and 
Cij 5 exp[κ ⋅ β ⋅ δ(i, j) ⋅ (Di 1 Dj)] is the common-feature match 
component.
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