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One of the central issues in categorization research has 
been the debate over the nature of category representation. 
According to prototype models, people abstract the cen-
tral tendency, or prototype, of a category, and use that ab-
straction as the basis for classifying new items (Homa & 
Vosburgh, 1976; Posner & Keele, 1968; S. K. Reed, 1972; 
J. D. Smith, Murray, & Minda, 1997). In contrast, exem-
plar models assume that people store particular exemplars 
of a category and base categorization decisions on similar-
ity to the exemplars (Heit, 1994; Hintzman, 1986; Medin 
& Schaffer, 1978; Nosofsky, 1986).

Prototype theory initially gained support due to results 
from the classic dot-pattern paradigm. In this paradigm, 
first introduced by Posner, Goldsmith, and Welton (1967), a 
prototype is created by randomly placing nine dots in a grid. 
Patterns at various levels of distortion are generated by dis-
placing each of the dots according to a statistical-decision 
rule. Early on, researchers observed that, following training 
on a number of distorted patterns, endorsement levels of the 
previously unseen prototype were relatively high, often ex-
ceeding endorsement levels of the old study patterns (Pos-
ner & Keele, 1968; Strange, Keeney, Kessel, & Jenkins, 
1970). This prototype-enhancement effect reinforced the 
idea that a prototype was abstracted during training.

However, exemplar models also predict a prototype-
enhancement effect because of the similarity of the pro-

totype to the numerous items stored in memory (Buse-
meyer, Dewey, & Medin, 1984; Hintzman, 1986; Shin & 
Nosofsky, 1992). In addition, exemplar models also make 
accurate predictions regarding generalization effects from 
particular old items (Homa, Sterling, & Trepel, 1981; No-
sofsky & Zaki, 2002).

However, in recent years, prototype theorists have ar-
gued that exemplar theory has been disconfirmed because 
of the typicality gradient observed in a highly influential 
version of the dot-pattern paradigm (J. D. Smith, 2002; 
J. D. Smith & Minda, 2001, 2002). In this task, first used 
by Knowlton and Squire (1993), participants view various 
high-level distortions from a single prototype in the train-
ing phase (see Figure 1, top row). In the test phase, partici-
pants see new patterns and decide whether each belongs to 
the category. The test patterns include the previously un-
seen prototype, low-level distortions of the prototype, new 
high-level distortions, and random patterns (see Figure 1, 
middle row). The classic result is a typicality gradient in 
which the prototype is endorsed with the highest prob-
ability, followed by the low-level distortions, high-level 
distortions, and random patterns.

The exemplar model correctly predicts the ordering of 
these endorsements, because patterns closest to the center 
of the category have the greatest summed similarity to 
the old items. However, using measures of physical dot 
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distance as a method of computing similarity, J. D. Smith 
(2002) and J. D. Smith and Minda (2001, 2002) fitted 
quantitative versions of exemplar and prototype models 
to these data. They reported that the exemplar model was 
unable to capture the steepness of the typicality gradi-
ent, whereas the prototype model fit the data well; that 
is, the exemplar model systematically underpredicted the 
rate at which the prototype and low-level distortions were 
endorsed relative to the endorsement rates of the other 
patterns. Nosofsky and Zaki (1998) had previously ac-
knowledged a similar result in formal analyses that made 
use of human similarity judgments, rather than measures 
of physical dot distance, among pairs of patterns.

Zaki and Nosofsky (2004) pointed to several reasons 
why a steeper typicality gradient than that predicted by 
the exemplar model might be observed in this particular 
paradigm. The most important factor involved learning 
that occurs during the transfer phase. In testing catego-
rization models, researchers often make the simplifying 
assumption that the category representation established 
during the learning phase remains stable during transfer. 
This simplifying assumption is usually a reasonable one: 
In most category learning paradigms, there is an extensive 
training phase in which observers receive trial-by-trial 
corrective feedback, and training often continues until 
observers reach a performance criterion. By contrast, the 

transfer phase is generally much shorter and feedback is 
withheld on the transfer patterns.

Learning conditions are very different, however, in the 
Knowlton–Squire (1993) paradigm. In the training phase, 
observers are simply presented with 40 high distortions 
of the prototype, and often do not even know until time 
of test that they have just experienced members of a cat-
egory. There is no trial-by-trial feedback during training, 
and no performance criterion to achieve. Furthermore, as 
explained below, the distribution of category members 
changes dramatically at time of transfer, when observers 
first need to try to discriminate between members and non-
members. Moreover, there is clear evidence that observers 
can use forms of implicit feedback at time of transfer as 
a basis for learning. In particular, Palmeri and Flanery 
(1999, 2002) demonstrated that participants can perform 
well in the Knowlton–Squire task, even in the complete 
absence of a training phase, by learning the category at 
time of test. Taken together, these considerations suggest 
that the assumption of a stable category representation at 
time of transfer is likely to be false.

Zaki and Nosofsky (2004) argued that, in the standard 
version of the paradigm that includes a training phase, 
learning during transfer is likely to affect the steepness 
of the typicality gradient by boosting the endorsement 
rates of the prototype and low distortions. During train-

Figure 1. Examples of stimuli used in the dot-pattern category learning task. The top row displays 
examples of the training instances—that is, various high distortions of the prototype. The middle 
row shows examples of transfer patterns from the standard task—that is, the prototype, a low dis-
tortion of the prototype, a new high distortion of the prototype, and a random pattern. The bottom 
row shows examples of low distortions of the high distortion from the middle row. These special low 
distortions were presented in the transfer phase of the modified task.
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ing, observers experience only 40 high distortions of the 
prototype; they never experience the prototype or its low 
distortions. By contrast, in the transfer phase, there are 4 
separate presentations of the prototype, 20 presentations 
of its low distortions, and 20 presentations of new high 
distortions. Thus, during transfer, observers are flooded 
with patterns that lie close to the center of the category, 
after having received no experience with such patterns 
during initial training. To the extent that observers update 
their category representations with new exemplars at time 
of transfer, the summed similarity for the prototype and 
low distortions will grow precipitously, so exemplar mod-
els will predict high endorsement rates for these patterns.

To test this explanation, Zaki and Nosofsky (2004) 
conducted experiments that manipulated the distribution 
of the patterns presented during transfer. In a “full set” 
condition, they replicated the standard Knowlton–Squire 
paradigm: During transfer, there were 4 presentations of 
the prototype, 20 low distortions, 20 new high distortions, 
and 40 random patterns. However, in a “subset” condition, 
there was only a single presentation of the prototype, 2 low 
distortions, 20 new high distortions, and 20 random pat-
terns. In accord with the learning-during-transfer explana-
tion, the observed typicality gradient was steeper in the 
standard condition than in the subset condition, support-
ing the hypothesis that the enhanced endorsement rate of 
the prototype and low distortions was due to their frequent 
presentations at time of test. Furthermore, Zaki and No-
sofsky (2004) demonstrated that a version of the exemplar 
model that assumed that people augment their category 
representations with the patterns presented during transfer 
provided a good qualitative account of the results.

Despite these findings, J. D. Smith (2002) and J. D. Smith 
and Minda’s (2001, 2002) research continues to exert a 
major influence in favor of prototype models in the cat-
egory representation debate (e.g., Ashby & Maddox, 2005; 
Juslin, Jones, Olsson, & Winman, 2003; Ramsey, Langlois, 
& Marti, 2005; Rhodes & Jeffery, 2006; Storms, 2004). For 
example, in their recent Annual Review chapter on Human 
Category Learning, Ashby and Maddox devoted a com-
plete section to the Knowlton–Squire prototype-learning 
paradigm and identified J. D. Smith (2002) and J. D. Smith 
and Minda’s (2001, 2002) typicality-gradient evidence as 
being a critical test that shows the inadequacy of the exem-
plar view. Likewise, J. D. Smith (2005) argued recently that 
“exemplar theory has been shown to have serious flaws and 
to fail qualitatively at critical points” and cited the typical-
ity gradient evidence to bolster this claim (p. 59). The work 
has even influenced the face perception literature, where 
the typicality gradient evidence is also cited as support for 
prototype representations over exemplar representations 
(Ramsey et al., 2005; Rhodes & Jeffery, 2006).

Given the major impact of the J. D. Smith (2002) and 
J. D. Smith and Minda (2001, 2002) articles, we felt it 
important to demonstrate the potential magnitude of the 
effect of learning during transfer on the typicality gradi-
ents in the Knowlton–Squire task. Although Zaki and No-
sofsky’s (2004) research suggested that the steepness of 
the gradients can be modified on the basis of the transfer 
test’s composition, the effects were of a subtle quantitative 

form. By contrast, the goal of the present research is to 
provide a dramatic, qualitative demonstration of the role 
of these learning-during-transfer effects. This demonstra-
tion, we hope, will ultimately lead the field to reevaluate 
whether or not past results involving the steepness of the 
typicality gradient are, in fact, due to the abstraction of a 
prototype from the training instances.

In the present research, we tested a condition in which 
participants experienced the same training phase as in 
the Knowlton–Squire task; but this time during transfer, 
instead of flooding the observer with the prototype and 
its low-level distortions, we chose an arbitrary high-level 
distortion to play that role. That is, for each observer, one 
of the high-level distortions was chosen at random and 
was presented four times during the test phase. In addi-
tion, using the same statistical-distortion procedure as in 
the previous studies, we presented 20 low-level distortions 
of that high-level distortion (see Figure 1, bottom row). 
Thus, in the transfer phase of this condition, participants 
experienced a cluster of patterns surrounding one of the 
high-level distortions instead of experiencing the cluster 
surrounding the prototype. The key question was the ex-
tent to which, in this modified condition, observers en-
dorsed as category members the high-level distortion and 
its surrounding cluster of low-level distortions. To reiter-
ate: The dominant current interpretation of the extreme 
prototype enhancement effect in the standard version of 
the Knowlton–Squire paradigm is that observers abstract 
the prototype from the training instances. A strong “high-
distortion enhancement effect” in the present modified 
paradigm would call into question this interpretation and 
would suggest instead that the steep typicality gradient is 
a reflection of learning during transfer.

EXPERIMENT

We compared the standard Knowlton–Squire dot-
 pattern task in one condition to a modified version of the 
task in another condition. As described in the Method 
section, the conditions differed only in the distribution of 
category members presented during transfer.

Method
Participants. One hundred ninety-nine Indiana University un-

dergraduates participated to fulfill a course requirement. Of those, 
50 participants were randomly assigned to the standard Knowlton 
and Squire (1993) condition and 149 to the modified transfer-test 
condition. We opted to test considerably more participants in the 
modified transfer condition in order to achieve reasonable sample 
sizes for the standard prototype and low-level distortions, which are 
presented with very low frequency in that condition.

Stimuli. The stimuli were nine-dot patterns (Posner et al., 1967; 
Posner & Keele, 1968). The training stimuli for both conditions con-
sisted of the 40 high-level distortions used by Knowlton and Squire 
(1993). For the standard condition, the transfer stimuli consisted of 
4 instances of the prototype, 20 low-level distortions, 20 new high-
level distortions, and 40 random patterns; for the modified version, 
the transfer test included only 1 instance of the prototype and 2 low-
level distortions, randomly selected for each participant. One of the 
high-level distortions was randomly chosen for each participant to 
be the center of a cluster of new patterns. That special high-level 
distortion was shown four times, and the remaining 19 were shown 
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once. Twenty low-level distortions of the special high-level distor-
tion were generated for each participant. Finally, the transfer test in-
cluded the 40 random patterns from the Knowlton and Squire (1993) 
set. Examples of the stimuli are shown in Figure 1.

Procedure. Participants were tested individually in a computer-
ized task. In the training phase, 40 high-level distortions were shown, 
one at a time, for 5 sec each. Following the procedure from previous 
studies, the participants’ task was simply to observe. In the transfer 
phase, following Knowlton and Squire (1993), participants were told 
that all of the dot patterns in the first phase belonged to a category of 
patterns in the same sense that if they had seen pictures of dogs, each 
picture would be a member of the category of dogs. On each trial, 
one of the test patterns was displayed on the computer screen, and 
participants judged whether it was a category member. The display 
was response terminated, and no feedback was provided. All pat-
terns appeared in a different random order for each participant.

Results
Figure 2A (open bars) shows the probability with which 

each stimulus type was endorsed in the standard condition 
of the Knowlton and Squire (1993) task. As in previous 
studies, an orderly typicality gradient was observed, with 
the prototypes being endorsed with the highest probability 
followed by the low-level distortions, high-level distor-
tions, and random patterns. The steepness of the typicality 
gradient is similar to that reported by J. D. Smith (2002) 
and J. D. Smith and Minda (2001, 2002).

The results from the modified condition, shown by the 
open bars in Figure 2B, could hardly be more dramatic. 
There is an extreme enhancement effect for the special 
high distortion. Indeed, in this condition, the endorsement 

rate for the special high distortion (.71) far exceeds that for 
the prototype itself (.58) [t(148) 5 2.77, p , .01]. Like-
wise, the low distortions of the special high distortion also 
have high endorsement rates (.65), even exceeding those 
of the low distortions of the prototype (.57) [t(148) 5 
2.11, p , .05]. Comparing across conditions, there is little 
difference between the endorsement rate for the special 
high distortion in the modified condition (.71) and the 
prototype in the standard condition (.75) [t(197) 5 0.70, 
p . .10]. In addition, there was no difference between 
the endorsement rates of the low-level distortions in the 
standard condition (.64) and the low-level distortions of 
the special high distortion in the modified condition (.65) 
[t(197) 5 0.09, p . .10].

In addition to the extreme enhancement effect for the 
special high distortion, the typicality gradient for the regu-
lar patterns (prototype, low distortions, and high distor-
tions) is far shallower in the modified condition than in the 
standard condition. A mixed model ANOVA with distortion 
level and condition as factors revealed a main effect of dis-
tortion, with participants tending to endorse items closer to 
the category prototype [F(2,394) 5 4.97, MSe 5 .390, p , 
.01]. More important, there was a significant interaction 
between condition and distortion level [F(2,394) 5 2.91, 
MSe 5 .228, p 5 .05], reflecting the fact that the slope of 
the typicality gradient was significantly shallower in the 
modified condition than in the standard condition.

The preceding results make dramatically clear that 
learning during transfer exerts a powerful influence on 

Figure 2. (A) the observed level of endorsement of the various patterns in the standard Knowlton and Squire (1993) condition; 
(B) The endorsement levels of the various patterns in the modified transfer condition. Proto, prototype; Low, low-level distortions; 
High, high-level distortions; Rand, random pattern; Spec. High, special high distortion chosen at random to be surrounded by a cluster 
of items in the transfer test; Spec. Low, low distortions of the Spec. High pattern. Open bars, observed data; solid dots, predictions from 
learning-during-transfer exemplar model. Error bars indicate 61 SEM.
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the pattern of performance in this paradigm. We also con-
ducted an analysis of the first 10 trials of transfer in order 
to gauge the speed at which this learning during trans-
fer occurred. (For similar analyses in a related category-
 learning paradigm, see Bozoki, Grossman, & E. E. Smith, 
2006.) The data, presented in Table 1, are, naturally, some-
what noisy, due to the relatively small number of observa-
tions in some of the cells, but a clear pattern of learning 
during transfer emerges, even in these first few trials. In 
particular, the typicality gradient around the special high 
level distortion in the modified transfer condition is quite 
steep, suggesting that participants are very quick to aug-
ment their representations with information from the ini-
tial stages of the transfer test. In the following section, we 
consider the ability of a learning-during-transfer exemplar 
model to account for the full pattern of results.

Theoretical Analysis
A natural question is whether a formalized learning-

during-transfer model can in fact account simultaneously 
for the varied effects displayed in Figure 2 and Table 1. 
As a first approximation, we used a relatively simple 
 learning-during-transfer exemplar model. The general 
intuition behind this model is that the probability with 
which an item is classified as a member of the category 
is determined jointly by its similarity to the training pat-
terns and its similarity to the previously seen test patterns, 
weighted by the relative strengths of the training and test 
patterns in memory.

Specifically, the evidence in favor of category member-
ship of item i is given by

 S y s sit if= ⋅∑( ) + ∑( ), (1)

where Σ sit is the summed similarity of test item i to the 
training items, y is a parameter reflecting the long term 
memory strength of the training exemplars, and Σ sif is the 
summed similarity of the test item to the preceding trans-
fer items weighted by their individual memory strengths.

The individual short term memory strength for a previ-
ous transfer item j is given by

 str( j) 5 vlag(i2j)21, (2)

where v is a memory decay parameter that ranges between 
0 and 1, and where lag(i2j) is the number of trials inter-
vening between the presentations of the current test item i 
and the previous test item j. Therefore, the test item pre-
sented on the immediately previous trial has a memory 
strength of 1, the test item presented two trials back has a 
memory strength of v, the test item presented three trials 
back has a strength of v2, and so forth.

The probability with which the item is classified as a 
category member is then given by

 P
S

S k
( ) ,Cat =

+
 (3)

where k is a response-criterion parameter.
We followed J. D. Smith’s (2002) and J. D. Smith and 

Minda’s (2001, 2002) approaches to computing the simi-
larity between the individual pairs of dot patterns. First, 
the psychological distance (dij) between each pair of pat-
terns was assumed to be functionally related to the physi-
cal distance between corresponding dots across the pairs 
(see J. D. Smith & Minda, 2001, for details). Second, the 
similarity between each pair of patterns was an exponential 
decay function of this distance (Shepard, 1987), such that

 s cdij ij= −( )exp , (4)

where c is an overall sensitivity parameter. The model 
uses four free parameters: the training-exemplar weight 
parameter y (Equation 1), the memory decay parameter v 
for computing individual transfer item strengths (Equa-
tion 2), the criterion parameter k (Equation 3), and the 
overall sensitivity parameter c (Equation 4).

We fitted the model simultaneously to the data from 
all the transfer trials from both conditions by searching 
for the values of the free parameters that minimized the 
sum of squared deviations (SSD) between the predicted 
and observed category-endorsement probabilities. In con-
ducting the fits, we derived predictions for each individual 
participant by using the precise sequence of transfer items 
that the individual participant experienced. The final pre-
dictions are averages computed over these individual-
 participant predictions.

The predicted endorsement probabilities are superim-
posed as dots on the observed probabilities in Figure 2. As 
can be seen in the figure, the model provides an excellent 
quantitative account of the complete set of data (SSD 5 
.0028) and captures all of the key qualitative effects of 
interest. First, it predicts an extreme prototype enhance-
ment effect in the standard condition. The reason is that 
the summed similarity of the prototype grows large due to 
the frequent presentations of the prototype and its low dis-
tortions at time of transfer. Likewise, the model predicts 
an extreme special high-distortion enhancement effect in 
the modified condition for analogous reasons. Finally, the 
typicality gradient for the standard patterns is relatively 
flat in the modified condition because the prototype and 
standard low distortions are not presented with high fre-
quency in that condition. The best-fitting parameters are 
reported in Table 2.

Table 1 
Observed Endorsement Probabilities for the Different Pattern 

Types in the First 10 Transfer Trials

Knowlton–Squire Modified Transfer
Condition Condition

Pattern Type  M  n  M  n

Prototype .87 15 .62 16
Low .59 119 .65 34
High .64 132 .62 318
Random .35 234 .33 675
Special high – – .75 60
Special low – – .69 387

Note—M, mean; n, number of observations upon which each mean is 
based. Note that different participants contribute different numbers of 
observations to these means, so detailed quantitative comparisons should 
be made with caution.
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To test whether the model could account for the rapid 
learning during transfer (Table 1), we fitted a version of 
the model simultaneously to the data from the first 10 tri-
als, as well as to the complete set of test trials. To account 
quantitatively for both the early test-trial data and the com-
plete test-trial data, we needed to introduce assumptions 
about how observers adjust their criterion setting during 
the course of testing. Note that as testing continued, the 
overall summed similarity of any given test item to all pre-
viously presented items grew larger and larger (because 
more items entered into the sum). Presumably, observers 
gradually increased the magnitude of the criterion setting 
to compensate for this increase in summed similarity. We 
modeled the increase in the criterion by using a functional 
form analogous to the increase in summed similarities for-
malized in Equations 1 and 2. Specifically, the magnitude 
of the criterion on trial n of transfer was given by

 k k u u u k
u

un
n

n

= + + + +



 = −

−












−
0

2 1
01

1

1
. . . ,  (5)

where k0 is the starting value of the criterion (on Test 
Trial 1), and u (0 # u # 1) governs the rate of growth 
of the criterion across trials. In general, Equation 5 de-
scribes a curvilinear increase in the magnitude of the cri-
terion setting across trials; that is, one in which the cri-
terion increases at a decreasing rate. (In the special case 
in which u 5 0, the criterion is constant across trials of 
testing, whereas in the special case in which u 5 1, the 
magnitude of the criterion is proportional to the number of 
test trials.) With this additional assumption of an increas-
ing criterion, the exemplar model uses 5 free parameters: 
the overall sensitivity parameter c, the training-exemplar 
weight parameter y, the memory decay parameter v, the 
starting criterion parameter k0, and the criterion growth 
parameter u.

Holding all parameters fixed across conditions and 
stages of testing, we fitted the model simultaneously to 
the data from the first 10 trials and the complete transfer 
data from both the standard and modified conditions. Due 
to the low number of observations of the prototype in the 
first 10 trials (see Table 1), we collapsed across the proto-
type and the low distortions when fitting the model. The 
predicted endorsement probabilities are shown next to the 
observed data in Table 3. The model does a good job of 

accounting for the data (SSD 5 .0100). Once again, the 
model pinpoints all of the data from the complete set of 
transfer trials in both the standard and modified conditions 
(see top panel of Table 3). Now, however, we also demon-
strate that the model can capture the very rapid learning 
observed for the special high distortion and special low 
distortions during the first 10 trials of the modified condi-
tion (see the bottom panel of Table 3). The only shortcom-
ing in the model is that it overpredicts the endorsement 
probabilities of the prototype and low distortions in the 
first 10 trials of the standard condition.1 The best-fitting 
parameter values are shown in Table 4.

The preceding modeling analyses were intended to be 
illustrative, and it is important to make various caveats: In 
particular, various aspects of the Knowlton–Squire dot-
pattern learning paradigm require the introduction of sim-
plifying assumptions in order to conduct the model fits. A 
great deal more research is needed to develop more rigor-
ous modeling accounts. One simplifying assumption in-
volves the technique for computing similarities among the 
dot patterns. On the basis of previous research reported by 
Posner et al. (1967), J. D. Smith and Minda (2001) suggest 
that the physical dot-distance method closely approxi-
mates psychological distance. Although the approxima-
tion may be a good one, psychological similarities among 
the dot patterns are also almost certainly influenced by 
higher order configural properties and emergent features 
that cannot be captured solely by measures of the physi-
cal locations of the individual dots (e.g., Hock, Tromley, 
& Polmann, 1988; Ichikawa, 1985). Second, the present 
modeling account assumes that an observer sums the sim-
ilarity of a test item to all previously presented test items, 
whether or not that observer has endorsed those items as 
being category members. A more complex possibility is 
that whether or not a transfer item becomes part of an 
observer’s augmented category representation depends on 
the classification response that the observer provides to 
the item at time of test. Despite these qualifications, we 

Table 2 
Best-Fitting Parameter Values for the 

Learning-During-Transfer Exemplar Model 
Fits to the Complete Set of Transfer Trial Data

 Parameter Value  

c 1.438
k 0.272
y 0.029
v 0.843
SSD  0.0028

Note—c, sensitivity parameter; k, response criterion parameter; y, weight 
given to each training exemplar; v, memory decay parameter for the test 
exemplars; SSD, sum of squared deviations between the observed and 
predicted endorsement probabilities.

Table 3 
Observed and Predicted Values for the  

Full Transfer Test and the First 10 Trials

Knowlton–Squire Modified

Pattern Type  Pre  Obs  Pre  Obs

All Trials
Prototype .72 .75 .59 .58
Low .65 .64 .59 .57
High .55 .57 .54 .56
Random .31 .30 .30 .29
Special high – – .73 .71
Special low – – .65 .65

First 10 Trials

Prot/low .69 .62 .64 .64
High .60 .64 .59 .62
Random .35 .35 .34 .33
Special high – – .77 .75
Special low – – .68 .69

Note—Modified, modified transfer condition; Pre, predicted values; 
Obs, observed values; Prot/low, weighted average for the prototype and 
low distortions.
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believe that the present analyses are valuable for demon-
strating the plausibility of an exemplar-based, learning-
during-transfer account of the results.

Finally, although the focus here is on the exemplar-
based account, we do not, of course, consider that these 
results rule out alternative models. For example, a proto-
type theorist could posit that multiple prototypes are es-
tablished at time of transfer. A dominant new prototype 
might be formed around the special high distortion, and a 
secondary prototype might be formed around the standard 
prototype defined by the training instances (Gureckis & 
Love, 2006). The crucial point, however, is that the cat-
egory representation is being modified at time of test. 
Previous claims in the literature—that exemplar theory is 
disconfirmed by the pattern of transfer in the Knowlton–
Squire paradigm—need to be reevaluated in light of the 
present empirical and formal-modeling results.

SUMMARY AND DISCUSSION

J. D. Smith (2002) and J. D. Smith and Minda (2001, 
2002) have argued that exemplar models fail to predict 
the magnitude of the prototype-enhancement effect 
and the steepness of the typicality gradient observed in 
the Knowlton–Squire (1993) version of the prototype-
 learning paradigm. This work has had a profound impact 
on the field in terms of favoring prototype models over 
exemplar models (see Ashby & Maddox’s, 2005, Annual 
Review chapter for a review). In particular, the dominant 
interpretation is that the steep typicality gradient provides 
evidence for the abstraction of a prototype from the train-
ing instances.

In the present research, however, we demonstrated in 
dramatic fashion that learning-during-transfer processes 
play a significant role in influencing performance in this 
paradigm, even after initial training has occurred. Whereas 
in the standard version of the task, observers are flooded 
with presentations of the prototype and its low distortions 
during transfer, in the modified condition tested here we 
instead selected an arbitrary high-level distortion to play 
an analogous role. Our observation of an extreme “high-
level distortion enhancement effect,” as well as the shallow 
typicality gradient for the standard patterns, makes clear 
that the category representation is updated in the trans-

fer phase of the task. Moreover, a simple version of an 
exemplar-based learning-during-transfer model provides 
an excellent account of the complete set of results, both 
the extreme prototype enhancement effect in the standard 
paradigm and the high-distortion enhancement effect in 
the modified version. Thus, the dominant interpretation 
by the field—that the steep typicality gradient observed 
in the standard task disconfirms exemplar theory—must 
clearly be reevaluated.

Other Implications
Although this research is primarily aimed at addressing 

conclusions from the prototype-exemplar debate, it has 
other implications as well. The original purpose of Knowl-
ton and Squire’s (1993) seminal study was not to contrast 
the predictions from prototype and exemplar models; rather, 
their study involved a demonstration that amnesic partici-
pants, with poor explicit recognition memory, could never-
theless perform well on the dot-pattern category-learning 
task. Indeed, whereas the amnesics performed significantly 
worse than did matched normal controls on tests of recog-
nition memory, they did not differ significantly from nor-
mal controls in their dot-pattern category learning. This 
demonstration of a dissociation between categorization 
and recognition performance was consistent with Knowl-
ton and Squire’s (1993) hypothesis that a separate implicit-
learning system guides various forms of category acqui-
sition. Similar demonstrations of such dissociations have 
been observed in closely related paradigms as well (e.g., 
Kolodny, 1994; Reber, Stark, & Squire, 1998; J. M. Reed, 
Squire, Patalano, E. E. Smith, & Jonides, 1999).

However, the interpretation of such dissociations has 
been a topic of intense debate. First, theorists have argued 
that many of the dissociations are in fact well predicted 
by single-system models that make allowance for param-
eter differences between groups (e.g., Love & Gureckis, 
2007; Nosofsky & Zaki, 1998; Palmeri & Flanery, 2002; 
Zaki, 2004; Zaki & Nosofsky, 2001; for related ideas, 
see; Kinder & Shanks, 2001; Lamberts & Shapiro, 2002), 
thereby calling into question the need to posit separate 
explicit memory and implicit category-learning systems. 
Second, researchers have also argued, with supporting ev-
idence, that observers can use forms of short-term work-
ing memory to acquire category knowledge at time of test 
(Bozoki et al., 2006; Palmeri & Flanery, 1999, 2002; Zaki 
& Nosofsky, 2001). The present study amplifies the latter 
point in dramatic fashion, and shows that the structure of 
the test phase can have a profound influence on perfor-
mance, even after completion of initial training. As argued 
by E. E. Smith (in press), the best current evidence for 
implicit category learning in amnesics comes from studies 
in which the amnesics first receive incidental training on 
a single category, are then told about the existence of the 
category, and are finally tested with highly structured cat-
egory members. Based on the present results, however, it 
seems clear that performance in such incidental-learning, 
single-category tasks involves an amalgam of memories 
of the training instances and of the particular category 
members experienced at time of test. Thus, this crucial 

Table 4 
Best-Fitting Parameter Values From the 

Learning-During-Transfer Exemplar Model Fits to 
All Transfer Trials and the First-10-Trials Data

 Parameter Value  

c 1.447
y 0.015
v 0.764
k0 0.026
u 0.863
SSD  0.0100

Note—c, sensitivity parameter; y, weight given to each training exem-
plar; v, decay parameter for test item memory strengths; k0, starting cri-
terion parameter; u, criterion growth parameter; SSD, sum of squared de-
viations between the observed and predicted endorsement probabilities.
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role of learning during test needs to be carefully consid-
ered when comparing and interpreting the performance of 
normals and amnesics on such tasks.

In the Knowlton–Squire (1993) dot-pattern task, nu-
merous factors likely conspire to weaken the relative im-
pact of the training instances, including the weak category 
structure at time of training (high distortions with little 
resemblance to one another), the lack of a training crite-
rion, the lack of trial-by-trial feedback, and participants’ 
lack of awareness that they are participating in a category-
 learning situation. These factors are then combined with 
strong category structure at time of test (multiple presen-
tations of a prototype and low-level distortions that are 
all highly similar to each other) and explicit knowledge 
of the goal of categorization. Under these conditions, 
the dramatic role of learning during test seems easy to 
understand. It remains an open question whether analo-
gous forms of learning during test arise in other category 
learning paradigms. Although such forms are not likely 
to be as dramatic as those that occur in the present kinds 
of incidental, single-category learning tasks, researchers 
should be on the lookout for them by including appropri-
ate control conditions that manipulate the composition of 
the training instances and of the transfer tests.
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